xgboost4分类问题,样本不均衡 应用

在这里插入图片描述

#分类案例,样本不均衡
import numpy as np
import pandas as pd
from xgboost import XGBClassifier
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,recall_score,roc_auc_score
import matplotlib.pyplot as plt
#制造不平衡数据集
class1=500000
class2=50000
centers=[[0.0,0.0],[10.0,10.0]]
clusters_std=[7.5,3]
X,y=make_blobs(n_samples=[class1,class2]
              ,centers=centers
              ,cluster_std=clusters_std
              ,random_state=0,shuffle=False)#shuffle:将数据进行洗乱,默认值是True
X.shape
#接下来使用sklearn库进行建模
Xtrain,Xtest,ytrain,ytest=train_test_split(X,y,test_size=0.3,random_state=0)
clf=XGBClassifier().fit(Xtrain,ytrain)
preds=clf.predict(Xtest)

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值