1.今天在处理一个时间序列的数据的时候,因为在时域范围内的特征看起来不太明显,就想着用np.fft.fft()函数将数据转换成频域来分析。但是却出现这样一个问题:函数前与函数后的输出是一样的,这肯定是有环节出现问题了,凭常识也应该知道这是不可能的。原因在于np.fft.fft()这个函数对应于另一个np.fft.fft2(),前者处理的是一维的数据,后者处理的是二维的数据,如果用前者处理二维的数据,输出来的结果肯定是不对的。以后在直接调用具体的函数的时候一定要仔细看一下对数据维度的要求。
2.(12,)与(12,1)形状的数据的维度是不一样的,前者是一维,后者是二维,只是有一个维度的长度是1,需要注意区分。
3.在读入数据进算法之前,必需对读入的数据有充足的理解与观察。尤其是读入数据的类型,尤其是要在服务器上运行程序的时候,数据类型的不同,不仅仅在存储数据的时候有所显示,还表现在对数据进行运算的时候是否会存在溢出的问题。(不如,若读入的数据是int型,在做运算的时候一旦运算后的结果稍微一大或者一小,就会出现溢出的情况,造成计算失误,而这种失误往往还是不容易察觉的)
关于数据类型踩过的坑
最新推荐文章于 2022-03-10 17:17:02 发布