目录
贷中阶段模型
在贷中阶段,我们可以获得丰富的客户交易、还款和App 使用等行为数据。通过这些行为数据,我们能够全面、客观、准确地预测客户的未来表现,从而制订有针对性的贷中管理策略。下面分别介绍贷中行为模型和交易风险模型。
贷中行为模型
贷中行为模型即行为评分卡,也称B卡(Behavior scorecard),是根据客户借款后的行为表现,预测其未来逾期概率的模型。
标签
贷中行为模型的标签是客户在未来是否会严重逾期,和贷前信用风险模型的标签类似。逾期定义可以根据产品形态、滚动率和账龄分析确定。例如,对于期限为6期的产品,可以将3期表现期内逾期超过30天定义为“坏”;对于期限为12期的产品,可以将6期表现期内逾期超过60天定义为“坏”。通常,B卡针对客户粒度建模,同一客户可能有多期账单,因此可以取逾期最长、最严重的一个账单作为对客户的“好坏”定义。
样本和特征
贷中行为模型建模样本通常是借款成功且有2-3个月还款行为的客户,另外,需要排除观察时间点已经逾期的客户。B卡通常每隔一段时间运行一次,对所有满足条件的在贷客户进行评分。由于同一个客户在不同时间点的风险不同,因此B卡得分会有差异。在建模样本的准备上,可以模拟实际情况,对同一个客户取不同时间点的样本并分别作为独立样本进行建模。如果客户数量足够大,那么,我们可以对一个客户只取一个时间点的样本,因为样本大,所以也能够覆盖不同在贷时长的客群。
如果我们将同一个客户多个时间点的样本作为独立样本进行建模,那么需要在测试样本上排除已经纳入训练样本的客户,以避免高估模型效果。这样做的原因是同一客户不同时期的特征相似性比较高。
贷中行为模型建模时可用特征维度:贷前建模特征,即客户的申请信息、行为信息、多头信息和外部数据源;客户贷中行为特征,如客户每期的还款情况、使用App登录行为、支用额度的比例和频次等。
交易风险模型
交易风险模型是在已经获得授信的客户发生支用或消费交易等行为时进行风险预估的模型。该模型用于拦截高风险交易,及时止损。交易风险模型与信用风险模型类似,只是交易风险模型在获得的特征维度上会包含更多贷中的行为数据。
标签
交易风险模型的标签为交易成功客户在交易后是否发生严重逾期,具体定义可以参考贷前信用风险模型。
样本和特征
交易风险模型建模样本为过去交易成功且满足一定表现期的客户。
贷后阶段模型
贷后阶段的模型根据客户放贷后的行为表现,预测客户的还款概率。原始催收表现为尽可能多地联系客户,然后依靠客户近期的逾期行为调整策略。后来的精细化催收策略开始考虑过去的逾期行为、债务情况等。在出现贷后还款预估模型后,精细化催收策略有了更大的操作空间,使得后续环节更有效率。
还款预估模型
还款预估模型,即催收评分卡,也称C卡(Collection scorecard),是预测已逾期的客户在未来一段时间的还款概率的模型。通常,逾期客户在早期还款的可能性较大,越往后;越难还款,因此,我们可以利用还款预估模型制订差异化的催收策略,提高还款率。
标签
还款预估模型的标签是客户在观察时间点之后一段时间是否还款,可以根据业务形态进行差异化设定。例如,早期逾期阶段可以为逾期1-10天,第1天是逾期状态目第11天依然是逾期状态的客户可定义为“坏”,否则为好,以此类推,中期逾期阶段可以为11~30天,晚期逾期阶段可以为31-90天
样本和特征
还款预估模型建模样本是已经逾期的客户,我们需要排除预测时间点前已还款或不满足表现期定义的样本。建模特征包含贷前和贷中的特征,此外,可以从催收提醒和早期的催收记录中进一步提取特征,如通话频次、平均时长和是否承诺还款等关键词。
失联预估模型
失联预估模型预测已逾期的借款人在未来一段时间是否会失联。在催收后期,通常出现无法联系到借款人的情况,这对催收工作的推进产生非常大的阻碍。如果我们能够在早期获得客户失联的可能性,那么可以对催收工作的开展提供指导。
标签
失联预估模型的标签是客户在未来一段时间是否失联,1表示“会失联”,0表示“不会
失联”。例如,我们可以将逾期10天的客户在之后30天内是否会失联作为标签。
样本和特征
失联预估模型建模样本通常是已经逾期且符合标签定义的客户。失联预估模型建模特征与还款预估模型类似,我们应重点关注关系网络特征和联系人相关特征,如一度联系人个数、紧急联系人个数、联系人类型和联系人是否有过借款等。
print('天天开心啊')