机器学习笔记(一) 决策树

本文介绍了机器学习中的决策树算法,从算法思想出发,阐述了如何通过信息增益选择最佳划分特征,并展示了程序实现过程及运行结果。同时讨论了决策树过拟合问题及其解决方案——剪枝。最后提到了随机森林和其他决策树构建方法。
摘要由CSDN通过智能技术生成

1、算法思想:

                                                  

                                                  

    下图中,方形框为数据集的特征,0/1为特征下的值,圆形框中为数据的最终类别。目的就是给数据集构造如上图的决策树,再用其为其它数据进行分类。

                                                                                                                     

     H(C):数据集C的香农熵,H(C|T):数据集C用特征T来划分后的香农熵,IG(T):为由原来数据C到划分集的信息增益 

                                                    

    从树根越往叶子节点走,数据集的类别就会越确定(从混乱到有序的过程),那这个数据集的香农熵就会越来越小,所以在决定一个数据集的最好划分特征时,可以取划分后信息增益最大的特征作为最好划分特征。


2、程序实现:


from math import log
import operator

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']

    return dataSet, labels

def calcShannonEnt(dataSet):#计算数据集的香农熵
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt
    
def splitDataSet(dataSet, axis, value): #用指定特征的某个值划分数据
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
    
def chooseBestFeatureToSplit(dataSet): #求数据集的最好的划分特征
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature



def createTree(dataSet,labels): #创建树
    classList = [example[-1] for example in dataSet]
    #两个停止条件
    if classList.count(classList[0]) == len(classList): 
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    bestFeat = chooseBestFeatureToSplit(dataSet) #找到这次数据的划分特征
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}} #创建嵌套字典
    del(labels[bestFeat]) #更新特征集
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues) #统计特征值
    for value in uniqueVals: #按照这些值分别再对键值求值(满足停条后返回的值)和递归求支树
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree

def majorityCnt(classList):  # 投票表决,classList为分类名称的列表
    classCount = {}
    for vote in classList: # 创建字典存储每个类出现次数
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) #排序
    return sortedClassCount[0][0] #取最高频率



def classify(inputTree,featLabels,testVec): #使用决策树inputTree对testVec进行分类,featLabels为testVec的特征集
    #firstStr = inputTree.keys()[0]
    firstSides = list(inputTree.keys()) #先转换成list,再把需要的索引提取出来
    firstStr = firstSides[0]
    secondDict = inputTree[firstStr] #键(根)的值(所有支树)
    featIndex = featLabels.index(firstStr) #找到根特征在testVec的位置
    key = testVec[featIndex] #testVec在根特征下的值
    valueOfFeat = secondDict[key] #树的特征值(也是键)的值
    if isinstance(valueOfFeat, dict): #如果存在支树
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

def storeTree(inputTree,filename): #存储树到文件
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename): #从文件中读取树
    import pickle
    fr = open(filename)
    return pickle.load(fr)

测试1:
mydata,myleb=createDataSet()
mytree=createTree(mydata,myleb)
print(type(mytree))
storeTree(mytree,'ceshi.tst')#存储树到文件
mytree1=grabTree('ceshi.tst')#再从文件中读取树
print("训练出来的树是:")
print(mytree1)
mytest=[0,0] #用于测试
mydata1,myleb1=createDataSet() #在createTree中myleb1的值会被改
myend=classify(mytree,myleb1,mytest)
print("测试案例:")
print(mytest)
print("的结果为:"+myend)

运行结果:



测试2(从文件中取出训练数据,构造并使用决策树预测隐形眼镜类型

            

 fr=open('lenses.txt')
    lenses=[inst.strip().split('\t') for inst in fr.readlines()]  #训练数据
    lenseslabels=['age','prescript','astigmatic','tearRate'] #数据特征
    lensestree=createTree(lenses,lenseslabels) #构造树
    storeTree(lensestree, 'wenjian')  # 存储树到文件
    mytree = grabTree('wenjian')  # 再从文件中读取树
    print("训练出来的树是:")
    print(mytree)
    #####################开始测试
    mytest = ['presbyopic','hyper',	'no',	'normal']  # 用于测试
    print("测试案例:")
    print(mytest)
    lenseslabels = ['age', 'prescript', 'astigmatic', 'tearRate']  # 在createTree中leb1的值会被改
    myend = classify(mytree, lenseslabels, mytest)  # 使用决策树对mytest进行分类
    print("结果为:" + myend)


运行结果:





3、决策树的过拟合

    解决方法:剪枝

    由全树的T0开始,剪枝部分结点得到T1,再减可得T2,T3......Tk, 在验证数据时对这K个树分别测试得出结果,选择损失函数最小的数T



4、补充:

        1、随机森林

        2、其他构造决策树方法:基尼系数、增益率

    





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值