Yang在2002年将自适应中的parameter tuning分为3类:
- deterministic adaptation 确定性的调整:根据预定义的规则自动地调整参数
- adaptive adaptation 适应性调整:根据整体的统计信息修改参数
- self-adaptive adaptation 自适应调整:参数被编码与个体共同进化
[1]使用了4种crossover方法,文中提出一种自适应方法根据种群反馈来调整每个算子的概率,而不是仅仅依靠先验知识来提高GA性能。4种crossover方法如下:
- Arithmetical Crossover
-
Wright’s Heuristic Crossover
-
BLX-α-β
-
Simulated binary crossover
4个算子初始概率为1/4,根据下一个群体中各自子代的评估结果自适应调整这些算子的比率,而不同的算子针对不同的问题时的特征不同,因此很难选择最好的算子,最合适的方式就是在进化过程中自动的选择最合适的算子。