遗传算法:自适应交叉和变异(二):ADAPTIVE CROSSOVER

Yang在2002年将自适应中的parameter tuning分为3类:

  • deterministic adaptation 确定性的调整:根据预定义的规则自动地调整参数
  • adaptive adaptation 适应性调整:根据整体的统计信息修改参数
  • self-adaptive adaptation 自适应调整:参数被编码与个体共同进化

[1]使用了4种crossover方法,文中提出一种自适应方法根据种群反馈来调整每个算子的概率,而不是仅仅依靠先验知识来提高GA性能。4种crossover方法如下:

  • Arithmetical Crossover
  • Wright’s Heuristic Crossover
  • BLX-α-β
  • Simulated binary crossover
4个算子初始概率为1/4,根据下一个群体中各自子代的评估结果自适应调整这些算子的比率,而不同的算子针对不同的问题时的特征不同,因此很难选择最好的算子,最合适的方式就是在进化过程中自动的选择最合适的算子。
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值