在大家的三连助攻下,TT 一举获得了超级多的猫咪,因此决定开一间猫咖,将快乐与大家一同分享。并且在开业的那一天,为了纪念这个日子,TT 在猫咖门口种了一棵苹果树。
一年后,苹果熟了,到了该摘苹果的日子了。
已知树上共有 N 个节点,每个节点对应一个快乐值为 w[i] 的苹果,为了可持续发展,TT 要求摘了某个苹果后,不能摘它父节点处的苹果。
TT 想要令快乐值总和尽可能地大,你们能帮帮他吗?
Input
结点按 1~N 编号。
第一行为 N (1 ≤ N ≤ 6000) ,代表结点个数。
接下来 N 行分别代表每个结点上苹果的快乐值 w[i](-128 ≤ w[i] ≤ 127)。
接下来 N-1 行,每行两个数 L K,代表 K 是 L 的一个父节点。
输入有多组,以 0 0 结束。
Output
每组数据输出一个整数,代表所选苹果快乐值总和的最大值。
输入样例
7
1
1
1
1
1
1
1
1 3
7 4
2 3
4 5
6 4
3 5
0 0
输出样例
5
解题思路:
树形DP
两个相邻的节点不能同时取,而且存在负数
dp定义很直接
dp[i][1] 取
dp[i][0] 不取
dp数组存最大值
可以从根节点dfs下去 收集0和1的信息
状态转移也很显然:
dp[x][0]+=MAX(dp[y][0],dp[y][1]);
dp[x][1]+=dp[y][0]
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int M=200005;
#define FOR(i,a,b) for(int i=(a),i##_end_=(b);i<=i##_end_;++i)
vector<int> es[M];
int val[M],dp[M][2];
int n,a,b,ans;
void dfs(int s,int fr){
dp[s][1]=val[s];
FOR(i,0,es[s].size()-1){
int y=es[s][i];
if(y==fr)continue;
dfs(y,s);
dp[s][0]+=max(dp[y][0],dp[y][1]);
dp[s][1]+=dp[y][0];
}
}
int main(){
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&val[i]);
while(scanf("%d%d",&a,&b)&&a){
es[a].push_back(b);
es[b].push_back(a);
}
dfs(1,0);
printf("%d\n",max(dp[1][0],dp[1][1]));
return 0;
}