K-means 聚类算法原理

K-means是一种常用的无监督学习算法,用于数据对象的分组。算法通过迭代找到聚类中心,常用于客户分群、欺诈检测等场景。其关键步骤包括选择初始聚类中心、计算距离并分配点、更新聚类中心,直到中心不再变化或达到迭代次数。Spark MLlib实现了K-means算法,提供参数调整和K的选择方法。K的选择是算法的关键,可通过计算Cost来评估聚类效果。K-means与KNN的主要区别在于K-means是聚类算法,而KNN是分类算法。
摘要由CSDN通过智能技术生成

聚类分析是一个无监督学习 (Unsupervised Learning) 过程, 一般是用来对数据对象按照其特征属性进行分组,经常被应用在客户分群,欺诈检测,图像分析等领域。K-means 应该是最有名并且最经常使用的聚类算法了,其原理比较容易理解,并且聚类效果良好,有着广泛的使用。

和诸多机器学习算法一样,K-means 算法也是一个迭代式的算法,其主要步骤如下:

  • 第一步,选择 K 个点作为初始聚类中心。
  • 第二步,计算其余所有点到聚类中心的距离,并把每个点划分到离它最近的聚类中心所在的聚类中去。在这里,衡量距离一般有多个函数可以选择,最常用的是欧几里得距离 (Euclidean Distance), 也叫欧式距离。公式如下:
Figure xxx. Requires a heading

其中 C 代表中心点,X 代表任意一个非中心点。

  • 第三步,重新计算每个聚类中所有点的平均值,并将其作为新的聚类中心点。
  • 最后,重复 (二),(三) 步的过程,直至聚类中心不再发生改变,或者算法达到预定的迭代次数,又或聚类中心的改变小于预先设定的阀值。

在实际应用中,K-means 算法有两个不得不面对并且克服的问题。

  1. 聚类个数 K 的选择。K 的选择是一个比较有学问和讲究的步骤,我们会在后文专门描述如何使用 Spark 提供的工具选择 K。
  2. 初始聚类中心点的选择。选择不同的聚类中心可能导致聚类结果的差异。

Spark MLlib K-means 算法的实现在初始聚类点的选择上,借鉴了一个叫 K-means||的类 K-means++ 实现。K-means++ 算法在初始点选择上遵循一个基本原则: 初始聚类中心点相互之间的距离应

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值