编辑距离 -- 动规

72. 编辑距离

给出动规的两种常见实现形式:自顶向下、自底向上,前者一般借助递归函数+备忘录实现,后者通常基于dp数组实现。


class MinDistance:
    """
    72. 编辑距离
    https://leetcode.cn/problems/edit-distance/
    """
    def solution(self, s1: str, s2: str) -> int:
        """
        递归解法 + 备忘录
        自顶向下
        :param s1:
        :param s2:
        :return:
        """
        #  memo[i][j] 表示 s1[0..i] 和 s2[0..j] 的最⼩编辑距离
        m, n = len(s1), len(s2)
        self.memo = [[-1 for _ in range(n)] for _ in range(m)]

        return self.dp(s1, m-1, s2, n-1)

    def dp(self, s1, i, s2, j):
        """
        自顶向下
        :param s1:
        :param i:
        :param s2:
        :param j:
        :return: s1[0..i] 和 s2[0..j] 的最⼩编辑距离
        """
        # base case
        if i == -1:
            return j+1
        if j == -1:
            return i+1

        if self.memo[i][j] != -1:
            return self.memo[i][j]

        if s1[i] == s2[j]:
            self.memo[i][j] = self.dp(s1, i-1, s2, j-1)
        else:
            self.memo[i][j] = min(
                self.dp(s1, i-1, s2, j) + 1,  # 删除
                self.dp(s1, i, s2, j-1) + 1,  # 插入
                self.dp(s1, i-1, s2, j-1) + 1,  # 替换
            )

        return self.memo[i][j]

    def solution2(self, s1: str, s2: str) -> int:
        """
        dp table
        自底向上 求解
        :param s1:
        :param s2:
        :return:
        """
        #  dp[i+1][j+1] 表示 s1[0..i] 和 s2[0..j] 的最⼩编辑距离
        m, n = len(s1), len(s2)
        dp = [[-1 for _ in range(n+1)] for _ in range(m+1)]
        # base case
        for i in range(m+1):
            dp[i][0] = i
        for j in range(n+1):
            dp[0][j] = j

        for i in range(1, m+1):
            for j in range(1, n+1):
                if s1[i-1] == s2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(
                        dp[i - 1][j - 1] + 1,
                        dp[i][j - 1] + 1,
                        dp[i - 1][j] + 1
                    )

        return dp[m][n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP_wendi

谢谢您的支持。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值