我们先从一个著名的积分——欧拉积分说起。
试求: ∫ 0 π 2 ln sin x d x \int_0^{\frac{\pi}{2}} \ln\sin x \, dx ∫02πlnsinxdx通过初步尝试,你会发现直接求原函数是十分困难的。
事实上,这并不是一个能用初等函数表示原函数的定积分。
正确解法为: ∫ 0 π 2 ln sin x d x = 1 2 ∫ 0 π 2 [ ln sin x + ln sin ( 0 + π 2 − x ) ] d x ( 1 ) = 1 2 ∫ 0 π 2 ( ln sin x + ln cos x ) d x = 1 2 ∫ 0 π 2 ln ( sin x cos x ) d x = 1 2 ∫ 0 π 2 ( ln sin 2 x − ln 2 ) d x = 1 4 ∫ 0 π 2 ln sin 2 x d ( 2 x ) − 1 2 ∫ 0 π 2 ln 2 d x = 1 4 ∫ 0 π ln sin x d x − π 4 ln 2 ( 2 ) = 1 2 ∫ 0 π 2 ln sin x d x − π 4 ln 2 ⇒ ∫ 0 π 2 ln sin x d x = − π 2 ln 2 \begin{align*} \int_0^{\frac{\pi}{2}} \ln\sin x \, dx &= \frac{1}{2}\int_0^{\frac{\pi}{2}} [\ln\sin x +\ln\sin(0+\frac{\pi}{2}-x)] \, dx \quad(1)\\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}} (\ln\sin x +\ln\cos x) \, dx \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}} \ln(\sin x\cos x) \, dx \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}} (\ln\sin 2x - \ln 2)dx \\ &= \frac{1}{4}\int_0^{\frac{\pi}{2}} \ln\sin 2x \, d(2x) - \frac{1}{2}\int_0^{\frac{\pi}{2}} \ln 2dx \\ &= \frac{1}{4}\int_0^{\pi} \ln\sin x \, dx - \frac{\pi}{4}\ln 2 \quad(2)\\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}} \ln\sin x \, dx - \frac{\pi}{4}\ln 2 \\ \Rightarrow \int_0^{\frac{\pi}{2}} \ln\sin x \, dx &= -\frac{\pi}{2}\ln 2 \end{align*} ∫02πlnsinxdx⇒∫02πlnsinxdx=21∫02π[lnsinx+lnsin(0+2π−x)]dx(1)=21∫02π(lnsinx+lncosx)dx=21∫02πln(sinxcosx)dx=21∫02π(lnsin2x−ln2)dx=41∫02πlnsin2xd(2x)−21∫02πln2dx=41∫0πlnsinxdx−4πln2(2)=21∫02πlnsinxdx−4πln2=−2πln2
其中在第 ( 1 ) (1) (1)步使用了区间再现公式,让我们来看看它的定义:
公式 : 区间再现公式
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx = \frac{1}{2}\int_{a}^{b} [f(x)+f(a+b-x)]dx ∫abf(x)dx=∫abf(a+b−x)dx=21∫ab[f(x)+f(a+b−x)]dx
令 x = a + b − t x = a + b - t x=a+b−t可证得上式,这里省略证明过程。
从几何角度进行解释: f ( x ) f(x) f(x)与 f ( a + b − x ) f(a+b-x) f(a+b−x)在区间 [ a , b ] [a,b] [a,b]上的图像是关于 x = a + b 2 x = \frac{a+b}{2} x=2a+b对称的,它们在区间 [ a , b ] [a,b] [a,b]上对应的积分值显然相等。
可以通过画图帮助我们理解:
此时,显然
f
(
x
)
=
ln
sin
x
f(x) = \ln\sin x
f(x)=lnsinx与
g
(
x
)
=
ln
cos
x
g(x) = \ln\cos x
g(x)=lncosx在积分区间
[
0
,
π
2
]
[0, \frac{\pi}{2}]
[0,2π]上所对应的值是相等的,这里我们可以知道:区间再现公式的本质是对称函数的换元。
接着,我们引入以下结论: 当 f ( x ) = g ( x ) g ( x ) + g ( a + b − x ) 时, ∫ a b g ( x ) g ( x ) + g ( a + b − x ) d x = 1 2 ( b − a ) 当 f(x)= \frac{g(x)}{g(x)+g(a+b-x)} 时,\int_{a}^{b} \frac{g(x)}{g(x)+g(a+b-x)}dx = \frac{1}{2}(b-a) 当f(x)=g(x)+g(a+b−x)g(x)时,∫abg(x)+g(a+b−x)g(x)dx=21(b−a)
这实际上是 ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_{a}^{b} f(x)dx = \frac{1}{2}\int_{a}^{b} [f(x)+f(a+b-x)]dx ∫abf(x)dx=21∫ab[f(x)+f(a+b−x)]dx的运用。
根据上述结论,我们可以轻松算出下列积分: ∫ 2 4 ln x ln ( 6 − x ) + ln x d x = 1 2 ( 4 − 2 ) = 1 \int_{2}^{4} \frac{\sqrt{\ln x}}{\sqrt{\ln(6-x)}+\sqrt{\ln x}}dx = \frac{1}{2}(4-2) = 1 ∫24ln(6−x)+lnxlnxdx=21(4−2)=1 ∫ 0 π 2 sin x sin x + cos x d x = 1 2 ( π 2 − 0 ) = π 4 \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x}dx = \frac{1}{2}(\frac{\pi}{2}-0) = \frac{\pi}{4} ∫02πsinx+cosxsinxdx=21(2π−0)=4π ∫ 0 2 e 3 − x e 1 + x + e 3 − x d x = 1 2 ( 2 − 0 ) = 1 \int_{0}^{2} \frac{e^{3-x}}{e^{1+x}+e^{3-x}}dx = \frac{1}{2}(2-0) = 1 ∫02e1+x+e3−xe3−xdx=21(2−0)=1
事实上, ∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_{a}^{b} f(x)dx = \frac{1}{2}\int_{a}^{b} [f(x)+f(a+b-x)]dx ∫abf(x)dx=21∫ab[f(x)+f(a+b−x)]dx还有更为多样的运用。
我们引入几个恒等式:
恒等式一
1 1 + x + 1 1 + 1 x = 1 ( x ≠ 0 ) \frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=1(x \neq 0) 1+x1+1+x11=1(x=0)把 x x x取成 tan λ x \tan^{\lambda}x tanλx得 1 1 + tan λ x + 1 1 + cot λ x = 1 \frac{1}{1+\tan^{\lambda}x}+\frac{1}{1+\cot^{\lambda}x}=1 1+tanλx1+1+cotλx1=1由诱导公式 cot x = tan ( π 2 − x ) \cot x = \tan(\frac{\pi}{2}-x) cotx=tan(2π−x)知,当积分上下限和 a + b = π 2 a+b=\frac{\pi}{2} a+b=2π时满足区间再现公式的使用条件。
把 x x x取成 a x a^x ax得 1 1 + a x + 1 1 + a − x = 1 \frac{1}{1+a^x}+\frac{1}{1+a^{-x}}=1 1+ax1+1+a−x1=1当积分上下限和 a + b = 0 a+b=0 a+b=0时满足区间再现公式的使用条件。
恒等式二
arcsin x + arcsin 1 − x 2 = π 2 ( 0 ≤ x ≤ 1 ) \arcsin x+\arcsin\sqrt{1-x^2}=\frac{\pi}{2}(0≤x≤1) arcsinx+arcsin1−x2=2π(0≤x≤1)把 x x x取成 x \sqrt{x} x得 arcsin x + arcsin 1 − x = π 2 \arcsin\sqrt{x}+\arcsin\sqrt{1-x}=\frac{\pi}{2} arcsinx+arcsin1−x=2π当积分上下限和 a + b = 1 a+b=1 a+b=1时满足区间再现公式的使用条件。
恒等式三
arctan x + arctan 1 x = π 2 ( x > 0 ) \arctan x+\arctan\frac{1}{x}=\frac{\pi}{2}(x>0) arctanx+arctanx1=2π(x>0)把 x x x取成 a x a^x ax得 arctan a x + arctan a − x = π 2 \arctan a^x+\arctan a^{-x}=\frac{\pi}{2} arctanax+arctana−x=2π当积分上下限和 a + b = 0 a+b=0 a+b=0时满足区间再现公式的使用条件。
特别的,当 f ( x ) f(x) f(x)是偶函数时: ∫ − c c 1 1 + a x ⋅ f ( x ) d x = 1 2 ∫ − c c f ( x ) d x \int_{-c}^{c}\frac{1}{1+a^x}\cdot f(x)dx = \frac{1}{2}\int_{-c}^{c}f(x)dx ∫−cc1+ax1⋅f(x)dx=21∫−ccf(x)dx ∫ − c c arctan a x ⋅ f ( x ) d x = π 4 ∫ − c c f ( x ) d x \int_{-c}^{c}\arctan a^x\cdot f(x)dx = \frac{\pi}{4}\int_{-c}^{c}f(x)dx ∫−ccarctanax⋅f(x)dx=4π∫−ccf(x)dx证明过程略。
综上,当碰到 1 1 + tan λ x , 1 1 + a x , arcsin g ( x ) , arctan g ( x ) \frac{1}{1+\tan^{\lambda}x},\frac{1}{1+a^x},\arcsin{g(x)},\arctan{g(x)} 1+tanλx1,1+ax1,arcsing(x),arctang(x)时,考虑使用区间再现公式进行积分求解。
实际上,当 f ( x ) = x g ( x ) f(x)=xg(x) f(x)=xg(x)(其中 g ( x ) g(x) g(x)满足 g ( x ) = g ( a + b − x ) g(x)=g(a+b-x) g(x)=g(a+b−x)) 时: ∫ a b x g ( x ) d x = a + b 2 ∫ a b g ( x ) d x \int_{a}^{b}xg(x)dx=\frac{a+b}{2}\int_{a}^{b}g(x)dx ∫abxg(x)dx=2a+b∫abg(x)dx我们可以利用这一结论消去被积函数中的 x x x。
对称在定积分中的应用
当原题进行至第 ( 2 ) (2) (2)步时,我们尝试对 ∫ 0 π ln sin x d x \int_0^{\pi} \ln\sin x \, dx ∫0πlnsinxdx使用区间再现公式: ∫ 0 π ln sin x d x = 1 2 ∫ 0 π [ ln sin x + ln sin ( 0 + π − x ) ] d x \int_0^{\pi} \ln\sin x \, dx = \frac{1}{2}\int_0^{\pi} [\ln\sin x +\ln\sin(0+\pi-x)] \, dx ∫0πlnsinxdx=21∫0π[lnsinx+lnsin(0+π−x)]dx由于 ln sin ( 0 + π − x ) = ln sin x \ln\sin(0+\pi-x)=\ln\sin x lnsin(0+π−x)=lnsinx,因此这步操作是没有意义的。
令 f ( x ) = ∫ 0 π ln sin x d x f(x) = \int_0^{\pi} \ln\sin x \, dx f(x)=∫0πlnsinxdx,我们不难发现 f ( x ) f(x) f(x)满足 f ( x ) = f ( 0 + π − x ) f(x)=f(0+\pi-x) f(x)=f(0+π−x),此时 f ( x ) f(x) f(x)在区间 [ 0 , π ] [0,\pi] [0,π]上的图像是关于 x = π 2 x = \frac{\pi}{2} x=2π对称的。
命题者通常会结合区间再现公式和对称进行出题,熟练掌握对称在定积分中的应用也是必要的。
结论一
曲线 y = f ( x ) 关于 x = k 对称 ⇔ f ( x ) = f ( 2 k − x ) 曲线y=f(x)关于x=k对称 \Leftrightarrow f(x)=f(2k-x) 曲线y=f(x)关于x=k对称⇔f(x)=f(2k−x)这条结论比较容易理解,通过图像我们可以发现对称轴左右两端对称的点往往相差 2 ( k − x ) 2(k-x) 2(k−x),即 x x x所对应的函数值 x + 2 ( k − x ) x+2(k-x) x+2(k−x)所对应的函数值相等。
结论二
若 y = f ( x ) 关于 x = a + b 2 对称,则 ∫ a a + b 2 f ( x ) d x = ∫ a + b 2 b f ( x ) d x 若y=f(x)关于x=\frac{a+b}{2}对称,则\int_{a}^\frac{a+b}{2}f(x)dx=\int_{\frac{a+b}{2}}^{b}f(x)dx 若y=f(x)关于x=2a+b对称,则∫a2a+bf(x)dx=∫2a+bbf(x)dx利用结论一 f ( x ) = f ( 2 ⋅ a + b 2 − x ) = f ( a + b − x ) f(x) = f(2\cdot\frac{a+b}{2}-x) = f(a+b-x) f(x)=f(2⋅2a+b−x)=f(a+b−x),作换元令 t = a + b − x t = a + b - x t=a+b−x可证得上式,这里省略证明过程。
对于复合函数而言: 内层函数 g ( x ) 是关于 x = k 对称,则复合函数 f ( g ( x ) ) 也是关于 x = k 对称 内层函数g(x)是关于x=k对称,则复合函数f(g(x))也是关于x=k对称 内层函数g(x)是关于x=k对称,则复合函数f(g(x))也是关于x=k对称由上述结论就可以得到:
sin x \sin x sinx关于 x = π 2 x=\frac{\pi}{2} x=2π对称, ln sin x \ln\sin x lnsinx也是关于 x = π 2 x=\frac{\pi}{2} x=2π对称,
∫ 0 π 2 ln sin x d x = ∫ π 2 π ln sin x d x = 1 2 ∫ 0 π ln sin x d x \int_0^\frac{\pi}{2} \ln\sin x \, dx = \int_\frac{\pi}{2}^{\pi} \ln\sin x \, dx = \frac{1}{2}\int_0^{\pi} \ln\sin x \, dx ∫02πlnsinxdx=∫2ππlnsinxdx=21∫0πlnsinxdx,
即 ∫ 0 π ln sin x d x = 2 ∫ 0 π 2 ln sin x d x \int_0^\pi \ln\sin x \, dx = 2\int_0^\frac{\pi}{2} \ln\sin x \, dx ∫0πlnsinxdx=2∫02πlnsinxdx。
总结
本文以欧拉积分为例,介绍了区间再现公式及其推广形式,并结合对称性分析了其在定积分中的应用。通过具体实例,我们看到这些方法在处理复杂积分时的高效性。对于无法直接求解原函数的定积分,区间再现公式和对称性提供了强有力的工具。