奇异值分解(SVD)原理与在降维中的应用

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:
A x = λ x Ax=\lambda x Ax=λx
其中A是一个 n × n n\times n n×n的实对称矩阵, x x x是一个 n n n维向量,则我们说 λ \lambda λ是矩阵A的一个特征值,而 x x x是矩阵A的特征值 λ \lambda λ所对应的特征向量。
求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的 n n n个特征值 λ 1 ≤ λ 2 ≤ . . . ≤ λ n \lambda_1\leq\lambda_2\leq...\leq\lambda_n λ1λ2...λn,以及这 n n n个特征值所对应的特征向量 { w 1 , w 2 , . . . , w n } \lbrace w_1,w_2,...,w_n\rbrace {w1,w2,...,wn}如果这nn个特征向量线性无关(正交),那么矩阵A就可以用下式的特征分解表示:
A = W ∑ W − 1 A=W\sum W^{-1} A=WW1
其中W是这n个特征向量所张成的 n × n n\times n n×n维矩阵,而Σ为这n个特征值为主对角线的 n × n n\times n n×n维矩阵。
一般我们会把W的这nn个特征向量标准化,即满足 ∣ ∣ w i ∣ ∣ 2 = 1 ||w_i||_2=1 wi2=1, 或者说 w i t w i = 1 w_i^tw_i=1 witwi=1,此时W的n个特征向量为标准正交基,满足 W T W = 1 W^TW=1 WTW=1,即 W T = W − 1 W^T=W^{-1} WT=W1, 也就是说W为酉矩阵。
这样我们的特征分解表达式可以写成
A = W ∑ W T A=W\sum W^T A=WWT
注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2. SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:
A = U ∑ V T A=U \sum V^T A=UVT
其中U是一个m×m矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足 U T U = I U^TU=I UTU=I, V T V = I V^TV=I VTV=I, U T U = I U^TU=I UTU=I, V T V = I V^TV=I VTV=I,下图可以很形象的看出上面SVD的定义:
在这里插入图片描述
那么我们如何求出SVD分解后的U,Σ,V这三个矩阵呢?
如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵 A T A A^TA ATA既然 A T A A^TA ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A T A ) v i = λ i v i (A^TA)v_i=\lambda_i v_i (ATA)vi=λivi
这样我们就可以得到矩阵 A T A A^TA ATA的n个特征值和对应的n个特征向量v了。将 A T A A^TA ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。
如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵 A A T AA^T AAT。既然 A A T AA^T AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
( A A T ) u i = λ i u i (AA^T)u_i=\lambda_i u_i (AAT)ui=λiui
这样我们就可以得到矩阵 ( A A T ) (AA^T) (AAT)的m个特征值和对应的m个特征向量u了。将 ( A A T ) (AA^T) (AAT)的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。
U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。
我们注意到:
A = U ∑ V T    ⟹    A V = U ∑ V T V    ⟹    A V = U ∑    ⟹    A v i = σ i u i    ⟹    σ i = A v i / u i A=U\sum V^T\implies AV=U\sum V^TV\implies AV=U\sum\implies Av_i=\sigma_iu_i\implies\sigma_i=Av_i/u_i A=UVTAV=UVTVAV=UAvi=σiuiσi=Avi/ui
这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ
。。。。。。这里省略一些字
进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:
σ i = λ i \sigma_i=\sqrt {\lambda_i} σi=λi

3. SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:
A = ( 0 1 1 1 1 0 ) A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1&0\\ \end{pmatrix} A=011110
我们首先求出 A T A A^TA ATA A A T AA^T AAT
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A^TA=\begin{pmatrix} 0 & 1 &1 \\ 1 & 1 &0\\ \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1&0\\ \end{pmatrix} =\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} ATA=(011110)011110=(2112)
A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) AA^T=\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1&0\\ \end{pmatrix}\begin{pmatrix} 0 & 1 &1 \\ 1 & 1 &0\\ \end{pmatrix}=\begin{pmatrix} 1 & 1 &0 \\ 1 & 2 &1\\0&1&1 \end{pmatrix} AAT=011110(011110)=110121011

4. SVD的一些性质

5. SVD小结

SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。**SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。**当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值