机器学习实战(十二)降维(PCA、SVD)

本文介绍了机器学习中的降维技术,包括PCA(主成分分析)和SVD(奇异值分解)。PCA基于最大方差理论,通过特征向量降低数据维度;SVD则通过奇异值分解实现数据的压缩和降噪。文章讨论了如何选择低维空间的维度,并提供了实战案例展示PCA和SVD的降维及矩阵压缩应用。
摘要由CSDN通过智能技术生成

目录

0. 前言

1. 主成分分析PCA(Principal Component Analysis)

2. 奇异值分解SVD(Singular Value Decomposition)

3. 低维空间维度的选择

3.1. PCA

3.2. SVD

3.3. 平均投影误差的平方

4. 实战案例

4.1. PCA降维

4.2. SVD降维

4.3.  SVD压缩存储矩阵


学习完机器学习实战的降维,简单的做个笔记。文中部分描述属于个人消化后的理解,仅供参考。

本篇综合了先前的文章,如有不理解,可参考:

吴恩达机器学习(十二)主成分分析

所有代码和数据可以访问 我的 github

如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~

0. 前言

数据的特征数量,又称作向量的维度。降维(dimensionality reduction)是通过一些方法,减少数据的特征数量,以降低维度。

  • 数据压缩,减小占用的存储空间
  • 加快算法的计算速度
  • 低维平面可以可视化数据

主要有几种降维的方法:

  • 主成分分析(PCA):将数据映射到低维度的新坐标轴上,以降低维度
  • 因子分析(FA):假设数据由隐变量和噪声组成,通过找到隐变量,就可以降维
  • 独立成分分析(ICA):假设数据是由多个数据源混合组成,通过找到数据源,就可以实现降维

本篇主要介绍PCA和利用SVD将数据映射到低维度上。

PCA:

  • 优点:降低数据的复杂性,识别最重要的多个特征
  • 缺点:不一定需要,且可能损失有用信息
  • 适用数据类型:数值型数据

SVD:

  • 优点:简化数据,去除噪声,提高算法的结果
  • 缺点:数据的转换可能难以理解
  • 适用数据类型:数值型数据

数据是指接受的原始材料,其中可能包含噪声和不相关信息,而信息是指数据中的相关部分。

降维技术通常能使得数据变得更容易使用,去除数据中的噪声,获取数据集中的信息量。

1. 主成分分析PCA(Principal Component Analysis)

PCA 基于最大方差理论,寻找低维度的坐标系,使得各个数据点到平面的投影距离最小,如下图所示(图源:机器学习实战):

若数据投影到坐标轴A上,则各个数据点的投影距离之和大,若数据投影到坐标轴B上,则各个数据点的投影距离之和小,所以应选择坐标轴B。最大方差理论表明,数据投影在坐标轴B上时,数据的方差最大,所以这条坐标轴最能表示原始数据。

若低维坐标系的维度为 k,则选定每一条坐标轴都需要与先前的所有坐标轴正交,且在剩下的空间中具有最大方差。

PCA 的算法流程:

  1. 将数据进行均值归一化
  2. 计算数据的协方差矩阵(协方差矩阵维度为 n \times n
  3. 计算协方差矩阵的特征值和特征向量(特征值个数为 n,特征向量维度为 n \times n
  4. 将特征值从大到小排序,取前 k 个特征值的特征向量
  5. 通过特征向量,将数据映射到新的空间中,维度为 k(原始数据维度为 m\times n,特征向量维度为 n\times k

将低维数据映射到高维空间的估计点上,可将降维后的数据乘以特征向量的转置即可。

2. 奇异值分解SVD(Singular Value Decomposition)

SVD 同样可以去除数据中的噪声,用较小的数据集表示原始数据集,实现降维。

SVD 又可以称作隐性语义索引(Latent Semantic Indexing,LSI)或者隐性语义分析(Latent Semantic Analysis,LSA)。

通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值