Graph embedding techniques, applications, and performance: A survey 论文阅读和理解

1. 图嵌入的分类:

1.1基于矩阵分解

1.2基于随机游走

1.2.1 DeepWalk:通过随机游走保留了高阶属性

https://blog.csdn.net/qq_32294855/article/details/89006078

1.2.2 Node2Vec:深度优先和宽度优先

1.2.3暂缓

1.2.4暂缓

1.3基于深度学习

2. 图嵌入的应用

网络压缩、可视化、节点聚类、链路预测、节点分类

3. 实验数据集

  • 3.1 SYN-SBM: 合成的一个网络
  • 3.2 KARATE :空手道网络
  • 3.3 BLOGCATALOG :博客网络
  • 3.4 YOUTUBE : YOUTUBE 用户网络
  • 3.5 HEP-TH :论文协作网络
  • 3.6 ASTRO-PH :论文协作网络
  • 3.7 PROTEIN-PROTEIN INTERACTIONS (PPI) :蛋白质网络

4. 评价指标

5. 实验对比

6. python工具包GEM

包括提到的所有算法的工具包: Locally Linear Embedding, Laplacian Eigenmaps,Graph Factorization, HOPE, SDNE and node2vec
下载地址: https://github.com/palash1992/GEM

7. 图嵌入的未来研究方向

探索非线性结构、研究网络的演进、生成具有真实特性的综合网络

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页