求圆外一点做圆切线的切点坐标(算法)

求圆外一点做圆切线的切点坐标(算法)

求圆外一点做圆切线的切点坐标(算法)
tim题目要求

解此题的常规方法是圆的方程和切线方程联立解的两个点的坐标,这种方法过于繁琐,而且在代码中不易实现。由此想到用向量旋转来解此题,解法如下。

知识点提要

二维坐标下向量旋转后的向量坐标公式。如下图:
在这里插入图片描述

解题思路

解题思路就是通过以点到圆心的向量旋转得到新的点到圆心的向量,然后乘以模长得到坐标。
在这里插入图片描述

C程序代码
#include <stdio.h>
#include<math.h>
struct Point
{  // 声明结构体类型
    double x;      // 该点的x坐标
    double y;      // 该点的y坐标
}C,P,Q1,Q2,U;
// C是圆心的坐标 P是点的坐标 Q1,Q2是切点坐标 U是点到圆心的单位向量坐标
int main()
{
    double r =0; // 圆的半径
    double distance=0; // 圆心r 到p 点的距离
    double length=0; // 点p 到切点的距离
    double angle =0; // 切线与点心连线的夹角
    
    printf("请输入C点坐标:\n");
    scanf("%lf %lf",&C.x,&C.y);
    printf("请输入P点坐标:\n");
    scanf("%lf %lf",&P.x,&P.y);
    printf("请输入圆的半径:\n");
    scanf("%lf",&r);
    // 求出点到圆心的距离
    distance =sqrt((P.x-C.x)*(P.x-C.x)+ (P.y-C.y)*(P.y-C.y));
    // 判断是否符合要求 distance<=r 不符合则返回 否则进行运算
    if(distance<=r){
     printf("您输入的数值不在范围内!\n");
     return 0;
    }
     
    // 点p 到切点的距离
    length = sqrt(distance*distance-r*r);
    
    // 点到圆心的单位向量
    U.x=(C.x-P.x)/distance;
    U.y=(C.y-P.y)/distance;
    
    // 计算切线与点心连线的夹角
    angle = asin(r/distance);
    
    // 向正反两个方向旋转单位向量
    Q1.x = U.x * cos(angle)  -  U.y * sin(angle);
    Q1.y = U.x * sin(angle)  +  U.y * cos(angle);
    Q2.x = U.x * cos(-angle) -  U.y * sin(-angle);
    Q2.y = U.x * sin(-angle) +  U.y * cos(-angle);
    // 得到新座标
    Q1.x = ( Q1.x + P.x) * length;
    Q1.y = ( Q1.y + P.y) * length;
    Q2.x = ( Q2.x + P.x) * length;
    Q2.y = ( Q2.y + P.y) * length;
    // 输出坐标
    printf("Q1的坐标为:(%.1f,%.1f),Q2的坐标为:(%.1f,%.1f) \n",Q1.x,Q1.y,Q2.x,Q2.y);
    
    return 0;
}

㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 一点饶某点旋转后的坐标 2 7. 矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断是否在多边形内 5 7. 矢量夹角余弦 5 8. 线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.线段所在直线的方程 6 12.直线的斜率 7 13.直线的倾斜角 7 14.点关于某直线的对称点 7 15.判断两条直线是否相交及直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.简单多边形的重心 15 13.凸多边形的重心 17 14.肯定在给定多边形内的一个点 17 15.从多边形一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 的基本运算 1 .点是否在内 20 2 .不共线的三点所确定的 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两关系: 24 2.判断是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两交点: 27 8.两公共面积: 28 9. 和直线关系: 29 10. 内切: 30 11. 切点: 31 12. 线段的左右旋: 31
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值