m邻接

本文转载自 : https://www.cnblogs.com/qinguoyi/p/7601178.html

在理解m邻接之前,先了解一下像素邻域的概念:

p的4邻域就是4个水平和垂直的相邻像素组成,p的D邻域由4个对角相邻像素组成,这两组点共同组成p的8邻域。

为了建立两个像素点之间是否有连接关系,我们需要定义一些准则,令V是用于定义邻接性的灰度值集合,当V={1},表示将图像中所有为1的点关联起来,当然了V中可能有更多的像素点,那么只要是来自V中的像素点都可以定义邻接性。

4邻接

下图中V={1},找出图中4邻接的像素点

8邻接

下图中V={1},找出图中8邻接的像素点

m邻接

对于V 假设要p,q两点是m邻接的 则要满足下面两个条件之一即可      

1、q在p的4邻域中,      

2、q在p的对角邻域中,并且q的4邻域与p的4领域相交为空集(交集无点属于V)

下图中V={1},找出图中m邻接的像素点

在这个图中,8邻域中的中间的那个1可以有两条路到达右上角的那个1,这就是所说的二义性,这个情况在边缘检测里面是很不希望的。

而改成m邻域以后,中间的1像素和右上角的像素是8连通的却不是m连通的,这可以从m连通的定义得到,因此,如果用M连通从中间的1到右上角的1就只有一条路。

M邻接本质是消除了8邻接多余的连接路径,更通俗的理解是:当像素间同时存在4邻接和8邻接时,优先采用4邻接,屏蔽和一个像素同时存在4邻接的两个像素之间的8邻接。

### 回答1: 非常感谢您的提问。不过,我需要说明的是,作为一名 AI 语言模型,我的知识储备主要基于各种公开数据和文献,无法直接获取您所提到的 CSDN 知识和经验。同时,我也无法直接判断您是否能够回答这个问题或者您对该问题的态度和看法。不过,我会尽我所能来解答您的问题。 关于您提到的问题:在处理中的m-邻接图中的数学表示,这通常指的是在图论中,用矩阵表示图的一种方式,也称为邻接矩阵。在邻接矩阵中,如果图中有n个节点,则矩阵的大小为n×n,矩阵中的每一个元素代表两个节点之间是否有连边,如果存在连边则为1,否则为0。m-邻接图则是在邻接矩阵的基础上进行扩展,其中每个节点的度数限制为不超过m,即每个节点最多只有m个相邻节点。这样的图可以用于解决某些特定的问题,例如最小路径覆盖等问题。 希望我的回答能对您有所帮助。如果您还有其他问题,请随时提出,我会尽力为您解答。 ### 回答2: 数字图像处理中的m-邻接是指在一个以像素为节点的数字图像中,两个像素之间的空间关系。m-邻接定义了两个像素之间是否是相邻的,即是否存在从一个像素到另一个像素的路径。 在m-邻接中,m表示空间关系的类型。常见的m-邻接类型有4-邻接和8-邻接。 1. 4-邻接:当m=4时,一个像素的4个相邻像素被认为是其4-邻域像素。它们位于像素的上、下、左、右四个方向。 2. 8-邻接:当m=8时,一个像素的8个相邻像素被认为是其8-邻域像素。它们位于像素的上、下、左、右以及四个对角线方向。 m-邻接关系在数字图像处理中常用于表示像素之间的连接性或者空间关系。例如,在图像分割中,可以使用m-邻接来定义像素之间的连通性,从而将图像分割成一个或多个区域。在形态学运算中,也会使用m-邻接来定义结构元素与图像之间的相对位置,从而实现形态学操作。 通过定义不同的m-邻接关系,我们可以在数字图像处理中对像素进行不同的空间分析和处理,从而得到感兴趣的图像特征或实现特定的图像处理任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值