(算法分析Week16)132 Pattern[Medium]

456. 132 Pattern[Medium]

题目来源

Description

Given a sequence of n integers a1, a2, …, an, a 132 pattern is a subsequence ai, aj, ak such that i < j < k and ai < ak < aj. Design an algorithm that takes a list of n numbers as input and checks whether there is a 132 pattern in the list.
Note: n will be less than 15,000.
Example 1:

Input: [1, 2, 3, 4]

Output: False

Explanation: There is no 132 pattern in the sequence.

Example 2:

Input: [3, 1, 4, 2]

Output: True

Explanation: There is a 132 pattern in the sequence: [1, 4, 2].

Example 3:

Input: [-1, 3, 2, 0]

Output: True

Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0].

Solution

给出一个数组,问是否存在132模式。132模式题目写得很清楚就不解释了。最容易想到的就是三重循环,i, j = i+1, k = j+1这样遍历,一个判断语句就可以了,但是显而易见TLE。
可以考虑降一重循环的方法,固定j,就是最大的那个数。然后在[0, j)中找最小的(以获得更大的寻找第三个数的范围),然后在j+1往后搜索满足条件的k,不过这样还是很慢。
还可以用一个栈,维护一个第二大的数second(即132中的2),栈里面放所有大于这个数的数字,从后往前遍历,如果找到一个数字小于second,则可以直接返回true(显然)。如果遍历到的数大于栈顶元素,那么我们把栈顶的元素赋值给second,并把遍历到的数压入栈。这是因为如果second值更大,会更容易找到一个满足nums[k]小于second的条件的值。

Complexity analysis

O(n)

Code

class Solution {
public:
    bool find132pattern(vector<int>& nums) {
        int second = INT_MIN;
        stack<int> s;
        for (int i = nums.size() - 1; i >= 0; --i) {
            if (nums[i] < second) 
                return true;
            else {
                while (!s.empty() && nums[i] > s.top()) {
                    second = s.top(); 
                    s.pop();
                }
                s.push(nums[i]);
            }
        }
        return false;
    }
};

Result

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值