假设你是一个专业的狗仔,参加了一个 n 人派对,其中每个人被从 0 到 n - 1 标号。在这个派对人群当中可能存在一位 “名人”。所谓 “名人” 的定义是:其他所有 n - 1 个人都认识他/她,而他/她并不认识其他任何人。
现在你想要确认这个 “名人” 是谁,或者确定这里没有 “名人”。而你唯一能做的就是问诸如 “A 你好呀,请问你认不认识 B呀?” 的问题,以确定 A 是否认识 B。你需要在(渐近意义上)尽可能少的问题内来确定这位 “名人” 是谁(或者确定这里没有 “名人”)。
在本题中,你可以使用辅助函数 bool knows(a, b) 获取到 A 是否认识 B。请你来实现一个函数 int findCelebrity(n)。
派对最多只会有一个 “名人” 参加。若 “名人” 存在,请返回他/她的编号;若 “名人” 不存在,请返回 -1。
示例 1:
输入: graph = [
[1,1,0],
[0,1,0],
[1,1,1]
]
输出: 1
解析: 有编号分别为 0、1 和 2 的三个人。graph[i][j] = 1 代表编号为 i 的人认识编号为 j 的人,而 graph[i][j] = 0 则代表编号为 i 的人不认识编号为 j 的人。“名人” 是编号 1 的人,因为 0 和 2 均认识他/她,但 1 不认识任何人。
示例 2:
输入: graph = [
[1,0,1],
[1,1,0],
[0,1,1]
]
输出: -1
解析: 没有 “名人”
注意:
该有向图是以邻接矩阵的形式给出的,是一个 n × n 的矩阵, a[i][j] = 1 代表 i 与 j 认识,a[i][j] = 0 则代表 i 与 j 不认识。
请记住,您是无法直接访问邻接矩阵的。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-the-celebrity
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
第一种思路:
双重循环的解非常好想,但是会超时……
第二种思路:
我们可以先试着找到一个可能的名人,
然后再判断这个可能的名人到底是不是真实的名人。
class Solution(object):
def findCelebrity(self, n):
"""
:type n: int
:rtype: int
"""
celebrity = 0
for i in range(1, n):
if knows(celebrity, i):
#说明当前的这个celebrity肯定不是名人,因为他认识别的人
celebrity = i
# 到这里的 celebrity,必定不认识 [celebrity + 1, n - 1]的所有人
for i in range(celebrity):
if knows(celebrity, i): # 为了确保celebrity 不认识 [0, celebrity - 1]
return -1
for i in range(n):
if not knows(i, celebrity): # 为了确保 每个人都认识 celebrity
return -1
return celebrity