LeetCode-Python-980. 不同路径 III

664 篇文章 23 订阅

在二维网格 grid 上,有 4 种类型的方格:

1 表示起始方格。且只有一个起始方格。
2 表示结束方格,且只有一个结束方格。
0 表示我们可以走过的空方格。
-1 表示我们无法跨越的障碍。
返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目,每一个无障碍方格都要通过一次。

 

示例 1:

输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
输出:2
解释:我们有以下两条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
示例 2:

输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]]
输出:4
解释:我们有以下四条路径: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
示例 3:

输入:[[0,1],[2,0]]
输出:0
解释:
没有一条路能完全穿过每一个空的方格一次。
请注意,起始和结束方格可以位于网格中的任意位置。
 

提示:

1 <= grid.length * grid[0].length <= 20

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:

数据规模暗示回溯,

题目要求明示回溯。

我的想法是,先找到起点,然后遍历从起点到终点的每一条路径,

如果有满足条件(穿过每一个空格方格一次, 并在终点结束)的路径,就把res + 1。

时间复杂度: O(4 ^ (M * N))

空间复杂度:  O(M * N)

class Solution(object):
    def uniquePathsIII(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        if not grid or not grid[0]:
            return 0
        m, n = len(grid), len(grid[0])
        
        totalZero = 0
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 0:
                    totalZero += 1
                elif grid[i][j] == 1:
                    x0, y0 = i, j

        dx = [1, -1, 0, 0]
        dy = [0, 0, 1, -1]
        visited = set()
        visited.add((x0, y0))
        self.res = 0
        
        def dfs(x, y, numZero): 
            # print x, y, numZero
            if grid[x][y] == 2 and numZero == totalZero:
                self.res += 1
                return
            
            if grid[x][y] == 0:
                numZero += 1
            for k in range(4):
                x1 = x + dx[k]
                y1 = y + dy[k]
                
                if 0 <= x1 < m and 0 <= y1 < n and (x1, y1) not in visited and grid[x1][y1] != -1:               
                    visited.add((x1, y1))
                    dfs(x1, y1, numZero)
                    visited.remove((x1, y1))
              
        dfs(x0, y0, 0)
        return self.res

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值