在二维网格 grid 上,有 4 种类型的方格:
1 表示起始方格。且只有一个起始方格。
2 表示结束方格,且只有一个结束方格。
0 表示我们可以走过的空方格。
-1 表示我们无法跨越的障碍。
返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目,每一个无障碍方格都要通过一次。
示例 1:
输入:[[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
输出:2
解释:我们有以下两条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
示例 2:
输入:[[1,0,0,0],[0,0,0,0],[0,0,0,2]]
输出:4
解释:我们有以下四条路径:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
示例 3:
输入:[[0,1],[2,0]]
输出:0
解释:
没有一条路能完全穿过每一个空的方格一次。
请注意,起始和结束方格可以位于网格中的任意位置。
提示:
1 <= grid.length * grid[0].length <= 20
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
数据规模暗示回溯,
题目要求明示回溯。
我的想法是,先找到起点,然后遍历从起点到终点的每一条路径,
如果有满足条件(穿过每一个空格方格一次, 并在终点结束)的路径,就把res + 1。
时间复杂度: O(4 ^ (M * N))
空间复杂度: O(M * N)
class Solution(object):
def uniquePathsIII(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]:
return 0
m, n = len(grid), len(grid[0])
totalZero = 0
for i in range(m):
for j in range(n):
if grid[i][j] == 0:
totalZero += 1
elif grid[i][j] == 1:
x0, y0 = i, j
dx = [1, -1, 0, 0]
dy = [0, 0, 1, -1]
visited = set()
visited.add((x0, y0))
self.res = 0
def dfs(x, y, numZero):
# print x, y, numZero
if grid[x][y] == 2 and numZero == totalZero:
self.res += 1
return
if grid[x][y] == 0:
numZero += 1
for k in range(4):
x1 = x + dx[k]
y1 = y + dy[k]
if 0 <= x1 < m and 0 <= y1 < n and (x1, y1) not in visited and grid[x1][y1] != -1:
visited.add((x1, y1))
dfs(x1, y1, numZero)
visited.remove((x1, y1))
dfs(x0, y0, 0)
return self.res