给你一个下标从 0 开始的整数数组 nums ,其长度是 2 的幂。
对 nums 执行下述算法:
设 n 等于 nums 的长度,如果 n == 1 ,终止 算法过程。否则,创建 一个新的整数数组 newNums ,新数组长度为 n / 2 ,下标从 0 开始。
对于满足 0 <= i < n / 2 的每个 偶数 下标 i ,将 newNums[i] 赋值 为 min(nums[2 * i], nums[2 * i + 1]) 。
对于满足 0 <= i < n / 2 的每个 奇数 下标 i ,将 newNums[i] 赋值 为 max(nums[2 * i], nums[2 * i + 1]) 。
用 newNums 替换 nums 。
从步骤 1 开始 重复 整个过程。
执行算法后,返回 nums 中剩下的那个数字。
示例 1:
输入:nums = [1,3,5,2,4,8,2,2]
输出:1
解释:重复执行算法会得到下述数组。
第一轮:nums = [1,5,4,2]
第二轮:nums = [1,4]
第三轮:nums = [1]
1 是最后剩下的那个数字,返回 1 。
示例 2:
输入:nums = [3]
输出:3
解释:3 就是最后剩下的数字,返回 3 。
提示:
1 <= nums.length <= 1024
1 <= nums[i] <= 109
nums.length 是 2 的幂
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/min-max-game
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
水题,理解题意后直接模拟就好。
理论上可以原地储存,每次把原数组size缩小一半,使得空间复杂度优化到O(1)。
时间复杂度:O(n) + O(n/2) + O(n/4) + O(n/8) + .... + O(1) ~= O(2n) = O(n)
空间复杂度:O(n)
class Solution:
def minMaxGame(self, nums: List[int]) -> int:
while len(nums) > 1:
new_nums = []
for i in range(0, len(nums), 2):
if i == 0 or i % 4 == 0:
# min
new_nums.append(min(nums[i], nums[i + 1]))
else:
# max
new_nums.append(max(nums[i], nums[i + 1]))
nums = new_nums[:]
return nums[0]