HOPC(Histogram of Orientated Phase Congruency)

对应文章:Robust Registration of Multimodal Remote Sensing Images Based on Structural Similarity(TGAS)

HOPC的升级版:A local phase based invariant feature for remote sensing image matching

 

过程:获得相位信息;提取相位的方向特征;

Introduction:

SSD(sum of squared differences):尽管计算快,但是不鲁棒quite sensitive to radiometric changes despite its high computational efficiency

NCC:具有线性不变性,但是不具有非线性不变性is vulnerable to non-linear radiometric differences

MI:具有非线性不变性,但是计算效率低,而且对匹配窗口敏感

基于形状的特征(structure and shape features ):

 

HOPC方法:

1. Fig3说明频域图像中相位谱更能保存物体的纹理等信息

#对HOPC中Fig3的实现
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2

def shift_ft(gray):
    M, N = gray.shape
    shift = np.matrix([[pow(-1,i+j) for j in range(N)] for i in range(M)])
    U = np.matrix([[np.exp(-1j*2*3.14159*m*i/M) for m in range(M)] for i in range(M)])
    V = np.matrix([[np.exp(-1j*2*3.14159*n*j/N) for j in range(N)] for n in range(N)])
    return U.dot(np.multiply(gray,shift)).dot(V)

def shift_ift(gray):
    M, N = gray.shape
    shift = np.matrix([[pow(-1,i+j) for j in range(N)] for i in range(M)])
    U = np.matrix([[np.exp(1j*2*3.14159*m*i/M) for m in range(M)] for i in range(M)])
    V = np.matrix([[np.exp(1j*2*3.14159*n*j/N) for j in range(N)] for n in range(N)])
    return np.multiply(shift,U.dot(img).dot(V))/M/N
#读取图像
img = plt.imread('lena.jpg')

#做傅里叶变换
result=shift_ft(img)

#获得傅里叶变换的幅值和相位
def fuzhi_xiangwei(x):
    return (x.real**2+x.imag**2)**(1/2),np.arccos(x.real/((x.real**2+x.imag**2)**(1/2))),np.arccos(x.imag/((x.real**2+x.imag**2)**(1/2)))
ufuzhi = np.frompyfunc(fuzhi_xiangwei,1,3)
fuzhi,xiangwei1,xiangwei2=ufuzhi(result)
result1=ufushu(fuzhi,xiangwei1,xiangwei2)
ift_img1 = abs(shift_ift(result1))#傅里叶逆变换

def fushu(a,b1,b2):
    real=a*np.cos(b1)
    imag=a*np.cos(b2)
    return real+imag*1j
ufushu=np.frompyfunc(fushu,3,1)

#做傅里叶逆变换
img_ift=shift_ift(result)
#随机改变幅值,相位不变,做相同的傅里叶逆变换得到不同幅值,相同相位的图像
result2=ufushu(fuzhi[::-1,::-1],xiangwei1,xiangwei2)#原本幅值为fuzhi,此处将fuzhi改为fuzhi[::-1,::-1]
result3=ufushu(fuzhi.T,xiangwei1,xiangwei2)

ift_img2 = abs(shift_ift(result2))
ift_img3 = abs(shift_ift(result3))
Image.fromarray(ift_img.astype(np.uint8))

结果:

 

2.利用小波变换来获得方向信息

HOPC特折构造过程:

(1)利用4 scale* 6 orientation的小波变换获得4*6个H*W的复平面小波变换结果。复平面表示变换结果既包括实部,也包括虚部。见https://blog.csdn.net/qq_32425195/article/details/113839287

(2)通过4*6个H*W的复平面小波变换结果可以得到:H*W的PC值和H*W的相位角。其中PC值可以表示像素的局部显著性,相位角可以表示像素的梯度方向。

(3)利用与SIFT和HOG类似的方法:

              将PC值看作梯度幅度,相位角看作梯度方向,从而将PC值分配到多个方向中(如分配到8个方向中)

              统计1个cell(1个cell包括3*3)个像素,统计该cell的梯度分布直方图

             汇总3*3个cell,得到一个block的特征。(9个cell,每个cell有8个方向的值,从而得到72维的值)

一个cell的特征的获取过程

 

即HOPC是利用小波变换得到的梯度方向分布作为特征。

注意:HOPC中的特征是经过归一化的(一个cell中所有特征是经过L2 norm的),此处的亮度值是没有归一化的。。所以实际的HOPC特征如下:

 

后续相关文章:
Automatic Registration of Optical and SAR Images  Via Improved Phase Congruency Model》 JSATAS 遥感3区
主要贡献:
1. 在雷达图像上,由于斑点噪声,导致直接相位一致性(phases congruency)计算得到的特征不鲁棒;因此,本文替换了计算相位一致性所用的小波变换函数,来更鲁棒。
 
2.匹配过程与CFOG类似,除了使用block-harris提取的角点外,还使用了格网点,让选点更加均匀;影像warp时,选择使用 locality preserving matching或者affine模型来做warp
 
 
3.通过二维图,显示不同方法做模板匹配的结果
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值