HOPC算法:基于结构相似性的多模态遥感影像配准方法
前言
随着遥感技术的发展,从遥感影像上获取所需信息已经成为一种非常重要的信息获取手段。不同的卫星传感器对地观测可以为同一地区提供多光谱、多时相、多分辨率的多模态遥感影像(光学、红外、SAR、LiDAR和栅格地图等)。多模态遥感的精确配准是诸多遥感应用如影像融合、变化检测,影像镶嵌等的基本预处理步骤,其配准精度对后续的分析应用产生重要的影响。。虽然目前的遥感影像利用轨道参数和严格几何定位模型进行粗纠正,可消除影像间的旋转和尺度等几何形变,但是由于多模态影像间非线性辐射差异较大,即同一地物呈现出完全不同的灰度信息,导致同名点的匹配十分困难,所以多模态遥感影像的自动匹配仍然非常具有挑战性。
传统的匹配方法主要利用灰度信息进行同名点识别,这些方法受灰度差异影响较大,不能应用于多模态遥感影像匹配。最近的局部不变性特征如SIFT算法,虽然可以适用于旋转和尺度变化的影像,但是对于非线性辐射差异非常敏感,匹配性能也不能满足实际工程的需要。因为,我们这里介绍一种新型的多模态遥感影像匹配方法(西南交通大叶沅鑫老师提出的),该方法基于影像间结构特征进行同名点匹配,因为结构特征可以较好地体现多模态影像间的共有属性(图1)。该方法是利用具有光照和对比不变性的相位一致性模型构建的几何结构特征描述符—相位一致性方法直方图(Histogram of Orientated Phase Congreucy, HOPC)。 该方法可实现可见光、红外、SAR、LiDAR和栅格地图等多种多模态遥感影像的自动配准,并获得了第23届国际摄影测量与遥感大会的最佳青年论文奖&#