cuda c++的一些记录(7)

仅作个人记录

参考:CUDA编程(八)树状加法_MingChao_Sun-CSDN博客
顺便说一句,这位博主的cuda系列写的很清晰,关于环境配置,也建议参考这位博主,简单直接就行。

过程中碰到问题,还是建议查看官方API文档
CUDA Runtime API :: CUDA Toolkit Documentation

上一篇介绍了ShareMemory和Thread同步,最后利用这些知识完成了block内部线程结果的加和,减轻了CPU的负担,但是block的加和工作是使用一个thread0单线程完成的,这点有待改进。

这个单线程的加法部分如何解决?cuda程序只有并行才能发挥其优势,这个加法能不能并行呢?答案是可行的,可以利用树状加法的方式将加法并行。

在这里插入图片描述
具体实现可以看原博客:CUDA编程(八)树状加法_MingChao_Sun-CSDN博客

相比上一版的程序,只用改动核函数里面的加和部分就OK了,下面是改好的核函数:

//__global__函数(GPU上执行),计算立方和
__global__ void sum_Squares(int *num, int *result, clock_t *time){
	extern __shared__ int shared[];//声明一块共享内存
	const int thread_id = threadIdx.x;//当前的线程编号(0开始)
	const int block_id = blockIdx.x;//当前的 thread 属于第几个 block(0 开始)
	shared[thread_id] = 0;

	clock_t start;
	if (thread_id == 0)	time[block_id] = clock();//计算时间,只在 threadid ==0 时进行,每个 block 都会记录开始时间及结束时间

	for (int i =block_id*THREAD_NUM + thread_id; i < DATA_SIZE; i += BLOCK_NUM*THREAD_NUM)	shared[thread_id] += num[i] * num[i] * num[i];

	__syncthreads();//同步 保证每个 thread 都已经把结果写到 shared[tid] 里面

	//树状加法
	int offset = 1, mask = 1;
	while (offset < THREAD_NUM)
	{
		if ((thread_id & mask) == 0)	shared[thread_id] += shared[thread_id + offset];
		offset += offset;
		mask = offset + mask;
		__syncthreads();//同步
	}

	if (thread_id == 0){
		result[block_id] = shared[0];
		time[block_id + BLOCK_NUM] = clock();
	}
}

总体代码:

#include <iostream>
#include <stdlib.h>
#include <time.h> //用于计时
#include <cuda_runtime.h>
#include <device_launch_parameters.h>

using namespace std;

//32 个 block,每个 block 有 256个 thread,共有 32*256= 8192个thread
#define BLOCK_NUM 32
#define THREAD_NUM 256
#define DATA_SIZE 1048576
int data[DATA_SIZE];

//产生随机数
void generateNum(int *data, int size){
	for (int i = 0; i < size; ++i)	data[i] = rand() % 10;
}

void printDeviceProp(const cudaDeviceProp &prop){
	cout << "Device Name: " << prop.name << endl;
	cout << "totalGlobalMem: " << prop.totalGlobalMem << endl;
	cout << "sharedMemPerBlock: " << prop.sharedMemPerBlock << endl;
	cout << "regsPerBlock: " << prop.regsPerBlock << endl;
	cout << "warpSize: " << prop.warpSize << endl;
	cout << "memPitch: " << prop.memPitch << endl;
	cout << "maxThreadsPerBlock:" << prop.maxThreadsPerBlock << endl;
	cout << "maxThreadsDim[0 - 2]: " << prop.maxThreadsDim[0] << " " << prop.maxThreadsDim[1] << " " << prop.maxThreadsDim[2] << endl;
	cout << "maxGridSize[0 - 2]: " << prop.maxGridSize[0] << " " << prop.maxGridSize[1] << " " << prop.maxGridSize[2] << endl;
	cout << "totalConstMem:" << prop.totalConstMem << endl;
	cout << "major.minor:" << prop.major << " " << prop.minor << endl;
	cout << "clockRate:" << prop.clockRate << endl;
	cout << "textureAlignment:" << prop.textureAlignment << endl;
	cout << "deviceOverlap:" << prop.deviceOverlap << endl;
	cout << "multiProcessorCount:" << prop.multiProcessorCount << endl;
}

//cuda初始化
bool InitCuda(){
	int count;
	cudaGetDeviceCount(&count);//获取能够使用的gpu数量,编号从0开始
	if (count == 0)	return false;//没有支持cuda的gpu
	int device = 0;
	for (; device < count; ++device){
		cudaDeviceProp prop;
		if (cudaGetDeviceProperties(&prop, device) == cudaSuccess){
			printDeviceProp(prop);
			break;//寻找一个可用的gpu
		}
	}
	cudaSetDevice(device);//决定使用编号为device的gpu
	return true;
}

//__global__函数(GPU上执行),计算立方和
__global__ void sum_Squares(int *num, int *result, clock_t *time){
	extern __shared__ int shared[];//声明一块共享内存
	const int thread_id = threadIdx.x;//当前的线程编号(0开始)
	const int block_id = blockIdx.x;//当前的 thread 属于第几个 block(0 开始)
	shared[thread_id] = 0;

	clock_t start;
	if (thread_id == 0)	time[block_id] = clock();//计算时间,只在 threadid ==0 时进行,每个 block 都会记录开始时间及结束时间

	for (int i =block_id*THREAD_NUM + thread_id; i < DATA_SIZE; i += BLOCK_NUM*THREAD_NUM)	shared[thread_id] += num[i] * num[i] * num[i];

	__syncthreads();//同步 保证每个 thread 都已经把结果写到 shared[tid] 里面

	//树状加法
	int offset = 1, mask = 1;
	while (offset < THREAD_NUM)
	{
		if ((thread_id & mask) == 0)	shared[thread_id] += shared[thread_id + offset];
		offset += offset;
		mask = offset + mask;
		__syncthreads();//同步
	}

	if (thread_id == 0){
		result[block_id] = shared[0];
		time[block_id + BLOCK_NUM] = clock();
	}
}

int main(){
	if (!InitCuda())	return 0;
	//生成随机数
	generateNum(data, DATA_SIZE);

	int *gpudata, *result;
	clock_t *time;
	//gpu上开内存空间存储数组以及计算结果
	cudaMalloc((void **)&gpudata, sizeof(int)*DATA_SIZE);//第一个参数是指针的指针
	cudaMalloc((void **)&result, sizeof(int)*BLOCK_NUM);//thread,block增多
	cudaMalloc((void **)&time, sizeof(clock_t)*BLOCK_NUM*2);

	//数据从cpu搬运到gpu
	cudaMemcpy(gpudata, data, sizeof(int)*DATA_SIZE, cudaMemcpyHostToDevice);

	//CUDA 中执行函数 语法:函数名称<<<block数目, thread数目, shared memory大小>>>(args...)
	sum_Squares <<<BLOCK_NUM, THREAD_NUM, THREAD_NUM * sizeof(int)>>>(gpudata, result, time);//512个线程进行运算

	//运算结果又从gpu搬运回cpu
	int sum[BLOCK_NUM];//进行修改
	clock_t time_cost[BLOCK_NUM*2];
	cudaMemcpy(&sum, result, sizeof(int)*BLOCK_NUM, cudaMemcpyDeviceToHost);
	cudaMemcpy(&time_cost, time, sizeof(clock_t)*BLOCK_NUM * 2, cudaMemcpyDeviceToHost);

	//释放gpu上面开的内存
	cudaFree(gpudata);
	cudaFree(result);
	cudaFree(time);

	int all_sum = 0;//cpu端进行加和
	for (int i = 0; i < BLOCK_NUM; ++i)	all_sum += sum[i];


	//新的计时策略 把每个 block 最早开始时间和最晚结束时间之差,为总运行时间
	clock_t min_start = time_cost[0], max_end = time_cost[BLOCK_NUM];

	for (int i = 1; i < BLOCK_NUM; i++) {
		if (min_start > time_cost[i])
			min_start = time_cost[i];
		if (max_end < time_cost[i + BLOCK_NUM])
			max_end = time_cost[i + BLOCK_NUM];
	}
	cout << "GPU_sum: " << all_sum << " time cost: " << max_end - min_start << endl;

	all_sum = 0;//cpu上面也计算一次进行验证
	for (int i = 0; i < DATA_SIZE; ++i)	all_sum += data[i] * data[i] * data[i];
	cout << "CPU_sum: " << all_sum << endl;

	return 0;
}

运行结果:
在这里插入图片描述
可以看到确实比只使用每个block的thread0进行加和要快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值