流形介绍(Manifolds: A Gentle Introduction)[续]

由于文章《流形介绍(Manifolds: A Gentle Introduction)》太长了,按 CSDN 博客要求,需要拆成两篇来写。下面主要是一些对度规张量的理解。

度规张量就是个对称矩阵?

又看了一些关于 metric tensor 的东西,知乎博文《度规张量(Metric Tensor)以及它的本质》中说度规张量是这样的:

的确,之前我也在博文《向量内积的几何解释》中介绍了向量内积的计算其实是带有一个度量矩阵的:


不过这应该和切空间之上的内积有所不同,毕竟切空间中的向量是微分操作。但还是在 Riemannian manifold - Wikipedia 中看到了最特殊的黎曼流形 – 欧氏空间 – 的切空间内积计算,与上面说的内积计算起码在形式上是一样的

这给公式 ( 22 ) (22) (22) 带来了一个具体的实例,但目前还不能确定这个计算是这样的: g p ( ∑ i a i ∂ ∂ x i , ∑ j b j ∂ ∂ x j ) = [ a 1 a 2 … a n ] [ ∂ ∂ x 1 ∂ ∂ x 2 ⋮ ∂ ∂ x n ] [ ∂ ∂ x 1 ∂ ∂ x 2 … ∂ ∂ x n ] [ b 1 b 2 ⋮ b n ] = [ a 1 a 2 … a n ] [ ∂ ∂ x 1 ∂ ∂ x 1 ∂ ∂ x 1 ∂ ∂ x 2 … ∂ ∂ x 1 ∂ ∂ x n ∂ ∂ x 2 ∂ ∂ x 1 ∂ ∂ x 2 ∂ ∂ x 2 … ∂ ∂ x 2 ∂ ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ∂ x n ∂ ∂ x 1 ∂ ∂ x n ∂ ∂ x 2 … ∂ ∂ x n ∂ ∂ x n ] [ b 1 b 2 ⋮ b n ] = [ a 1 a 2 … a n ] [ 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 ] [ b 1 b 2 ⋮ b n ] = ∑ i a i b i (25) \begin{aligned} &g_p(\sum_i a_i \frac{\partial}{\partial x^i}, \sum_j b_j \frac{\partial}{\partial x^j}) \\ =& \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x^1} \\ \frac{\partial}{\partial x^2} \\ \vdots \\ \frac{\partial}{\partial x^n} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x^1} & \frac{\partial}{\partial x^2} & \dots & \frac{\partial}{\partial x^n} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \\ =& \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x^1} \frac{\partial}{\partial x^1} & \frac{\partial}{\partial x^1} \frac{\partial}{\partial x^2} & \dots & \frac{\partial}{\partial x^1} \frac{\partial}{\partial x^n} \\ \frac{\partial}{\partial x^2} \frac{\partial}{\partial x^1} & \frac{\partial}{\partial x^2} \frac{\partial}{\partial x^2} & \dots & \frac{\partial}{\partial x^2} \frac{\partial}{\partial x^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x^n} \frac{\partial}{\partial x^1} & \frac{\partial}{\partial x^n} \frac{\partial}{\partial x^2} & \dots & \frac{\partial}{\partial x^n} \frac{\partial}{\partial x^n} \\ \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \\ =& \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \\ =& \sum_i a_i b_i \tag{25} \end{aligned} ====gp(iaixi,jbjxj)[a1a2an] x1x2xn [x1x2xn] b1b2bn [a1a2an] x1x1x2x1xnx1x1x2x2x2xnx2x1xnx2xnxnxn b1b2bn [a1a2an] 100010001 b1b2bn iaibi(25) 我从 Metric tensor - Wikipedia 中找到了初步答案:

从这一段来看, metric tensor 是个 n × n n \times n n×n 的对称矩阵 G [ f ] G[\bm{f}] G[f],其中 f = ( X 1 , ⋯   , X n ) \bm{f} = (X_1, \cdots, X_n) f=(X1,,Xn) 是基向量组,而 g i j [ f ] = g ( X i , X j ) g_{ij}[f] = g(X_i, X_j) gij[f]=g(Xi,Xj) 就是基向量之间的内积。也就是说,上面矩阵中的 ( ∂ ∂ x i ∂ ∂ x j ) (\frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}) (xixj) 其实是 g ( X i , X j ) g(X_i, X_j) g(Xi,Xj),很显然,在欧式空间中 g ( X i , X j ) = { 1 , i = j 0 , i ≠ j g(X_i, X_j) = \left\{\begin{matrix} 1, & i = j \\ 0, & i \ne j \end{matrix}\right. g(Xi,Xj)={1,0,i=ji=j 这和我们之前学的普通内积计算 e i ⊺ e j \bm{e}_i^\intercal \bm{e}_j eiej 是一样的。但从正式的定义上看

根据这个 bilinear 性质,式 ( 25 ) (25) (25) 应该是这样的: g p ( ∑ i a i ∂ ∂ x i , ∑ j b j ∂ ∂ x j ) = [ a 1 a 2 … a n ] [ g ( ∂ ∂ x 1 , ∂ ∂ x 1 ) g ( ∂ ∂ x 1 , ∂ ∂ x 2 ) … g ( ∂ ∂ x 1 , ∂ ∂ x n ) g ( ∂ ∂ x 2 , ∂ ∂ x 1 ) g ( ∂ ∂ x 2 , ∂ ∂ x 2 ) … g ( ∂ ∂ x 2 ∂ ∂ x n ) ⋮ ⋮ ⋱ ⋮ g ( ∂ ∂ x n , ∂ ∂ x 1 ) g ( ∂ ∂ x n , ∂ ∂ x 2 ) … g ( ∂ ∂ x n , ∂ ∂ x n ) ] [ b 1 b 2 ⋮ b n ] \begin{aligned} &g_p(\sum_i a_i \frac{\partial}{\partial x^i}, \sum_j b_j \frac{\partial}{\partial x^j}) = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^1}) & g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}) & \dots & g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^n}) \\ g(\frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^1}) & g(\frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^2}) & \dots & g(\frac{\partial}{\partial x^2} \frac{\partial}{\partial x^n}) \\ \vdots & \vdots & \ddots & \vdots \\ g(\frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^1}) & g(\frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^2}) & \dots & g(\frac{\partial}{\partial x^n}, \frac{\partial}{\partial x^n}) \\ \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \end{aligned} gp(iaixi,jbjxj)=[a1a2an] g(x1,x1)g(x2,x1)g(xn,x1)g(x1,x2)g(x2,x2)g(xn,x2)g(x1,xn)g(x2xn)g(xn,xn) b1b2bn 所以最根本的是基向量之间的内积计算,即度规张量。其他向量之间的内积皆可由其坐标和此对称矩阵得出

g ( X i , X j ) g(X_i, X_j) g(Xi,Xj) 可能并不一定要像欧氏空间那样定义,它只需要满足这三个条件就可以了,这有点像欧式空间向度量空间的泛化。

有了内积,就有范数

也就有了向量的长度。进一步,还能计算流形上曲线的长度(来源于Lecture 9. Riemannian metrics)

这就是我们在高等数学中学的曲线积分 g γ ( t ) ( γ ′ ( t ) , γ ′ ( t ) ) 1 / 2 g_{\gamma(t)}(\gamma^{'}(t), \gamma^{'}(t))^{1/2} gγ(t)(γ(t),γ(t))1/2 就是一小段曲线的长度。然而,就在这个积分式中, g γ ( t ) g_{\gamma(t)} gγ(t) 是随 p = γ ( t ) p = \gamma(t) p=γ(t) 的变化而变化的,这就很让人迷糊,前面我也说过了

这意味着 g p ( X p , Y p ) g_p(X_p, Y_p) gp(Xp,Yp) 不仅是两个切向量的函数还得是 p p p 的函数,若以 p p p 为自变量,则函数的因变量是 g ( X , Y ) ( p ) g(X, Y)(p) g(X,Y)(p),即因变量依然是个函数,如何平滑变化呢?也许可以想到 f ( x , y ) f(x, y) f(x,y) x x x 平滑变化,是指每固定一个 y = y 0 y = y_0 y=y0 后, f ( x , y 0 ) f(x, y_0) f(x,y0) x x x 的平滑函数。但这里的内积函数中, p p p 变化意味着 ( X p , Y p ) (X_p, Y_p) (Xp,Yp) 不可能固定,头疼!

有两段话让我逐渐明白了 metric tensor 是怎么回事。一段是上面的 Components of the metric,一段是下面这段话:

从这两段话来看, g p g_p gp 既可以看作一个内积函数,也可以看作一个 n × n n \times n n×n 的对称矩阵,它和普通内积计算中的度量矩阵 P ⊺ P P^\intercal P PP 是一样的。Components of the metric 中的 g i j [ f ] = g ( X i , X j ) g_{ij}[f] = g(X_i, X_j) gij[f]=g(Xi,Xj) 和上面的 g i j = g ( ∂ i , ∂ j ) g_{ij} = g(\partial_i, \partial_j) gij=g(i,j) 都是指基向量 ( X i , X j ) 或 ( ∂ i , ∂ j ) (X_i, X_j) 或 (\partial_i, \partial_j) (Xi,Xj)(i,j) 的之间的内积。如此,这个 n × n n \times n n×n 的对称矩阵 g p = [ g 11 ( p ) g 12 ( p ) ⋯ g 1 n ( p ) g 21 ( p ) g 22 ( p ) ⋯ g 11 ( p ) ⋮ ⋮ ⋱ ⋮ g n 1 ( p ) g n 2 ( p ) ⋮ g n n ( p ) ] g_p = \begin{bmatrix} g_{11}(p) & g_{12}(p) & \cdots & g_{1n}(p) \\ g_{21}(p) & g_{22}(p) & \cdots & g_{11}(p) \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1}(p) & g_{n2}(p) & \vdots & g_{nn}(p) \end{bmatrix} gp= g11(p)g21(p)gn1(p)g12(p)g22(p)gn2(p)g1n(p)g11(p)gnn(p) 就可以看成关于 p p p ( n × n ) − v a l u e d (n \times n) - valued (n×n)valued 的函数了,其中 g i j ( p ) = g p ( X i , X j ) g_{ij}(p) = g_p(X_i, X_j) gij(p)=gp(Xi,Xj) 是指基向量 ( X i , X j ) (X_i, X_j) (Xi,Xj) 之间的内积,它可以看作一个值(而不是函数)了。这就是对之前的 “ p → g p ( X ( p ) , Y ( p ) ) p \to g_p(X(p), Y(p)) pgp(X(p),Y(p)) 对于任意两个切向量 X ( p ) , Y ( p ) X(p), Y(p) X(p),Y(p) p p p 的光滑函数” 的解释。

因为对于任意的两个向量

它们的内积是

只要 ∀ i , j \forall i, j i,j g i j ( p ) g_{ij}(p) gij(p) 是光滑的,“ p → g p ( X ( p ) , Y ( p ) ) p \to g_p(X(p), Y(p)) pgp(X(p),Y(p))” 就是光滑的。

总结

  • 度规张量和之前学的度量矩阵其实是一回事
  • 度规张量随 p ∈ M p \in M pM 的平滑性其实是其实是基向量之间内积的平滑性
  • 有了度规张量,才有了内积、范数、长度等概念

简单的例子

理论学来终觉浅,来两个例子看看吧。先试试欧氏空间和 S 2 S^2 S2 中的曲线长度计算。

欧式空间中的曲线积分

就以 Example 4 (3 维欧式空间中的曲线积分) 为例子算一算。图 8 中,曲线的参数为: x = γ ( t ) = ( s i n π 4 c o s π t , s i n π 4 s i n π t , c o s π 4 ) , t ∈ [ − 1 , 1 ] \bm{x} = \gamma(t) = (sin\frac{\pi}{4}cos\pi t, sin\frac{\pi}{4}sin\pi t, cos\frac{\pi}{4}), t \in [-1, 1] x=γ(t)=(sin4πcosπt,sin4πsinπt,cos4π),t[1,1] 则某点处的切向量为 v t = ∑ i = 1 3 v ( x i ) ∂ ∂ x i = − π 2 s i n π t ⋅ ∂ ∂ x 1 + π 2 c o s π t ⋅ ∂ ∂ x 2 + 0 ⋅ ∂ ∂ x 3 \begin{aligned} v_t &= \sum_{i=1}^3 v(x^i) \frac{\partial}{\partial x^i} \\ &= -\frac{\pi}{\sqrt{2}}sin\pi t \cdot \frac{\partial}{\partial x^1}+ \frac{\pi}{\sqrt{2}}cos\pi t \cdot \frac{\partial}{\partial x^2} + 0 \cdot \frac{\partial}{\partial x^3} \\ \end{aligned} vt=i=13v(xi)xi=2 πsinπtx1+2 πcosπtx2+0x3 那么内积计算为 g ( v t , v t ) = ∑ i , j = 1 3 v ( x i ) v ( x j ) g ( ∂ ∂ x i , ∂ ∂ x j ) = ∑ i , j = 1 3 v ( x i ) v ( x j ) = π 2 2 s i n 2 π t + π 2 2 c o s 2 π t + 0 = π 2 2 \begin{aligned} g(v_t, v_t) &= \sum_{i,j=1}^3 v(x^i)v(x^j) g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) \\ &= \sum_{i,j=1}^3 v(x^i)v(x^j) \\ &= \frac{\pi^2}{2}sin^2\pi t + \frac{\pi^2}{2}cos^2\pi t + 0 \\ &= \frac{\pi^2}{2} \end{aligned} g(vt,vt)=i,j=13v(xi)v(xj)g(xi,xj)=i,j=13v(xi)v(xj)=2π2sin2πt+2π2cos2πt+0=2π2 😅,不好意思,把 t t t 消掉了,所以这个例子不是那么好,不过我们只不过是想了解一下计算过程,假装 t t t 还在。下一步就照搬公式积曲线的长度 L [ γ ] = ∫ − 1 1 g ( v t , v t ) 1 / 2 d t = ∫ − 1 1 ( π 2 2 ) 1 / 2 d t = π 2 t ∣ − 1 1 = 2 π \begin{aligned} L[\gamma] &= \int_{-1}^{1} g(v_t, v_t)^{1/2} dt \\ &= \int_{-1}^{1} (\frac{\pi^2}{2})^{1/2} dt \\ &= \frac{\pi}{\sqrt 2} t |_{-1}^{1} \\ &= \sqrt 2 \pi \end{aligned} L[γ]=11g(vt,vt)1/2dt=11(2π2)1/2dt=2 πt11=2 π 这其实就是高等数学中的曲线积分,只不过这里的小段曲线长度用 g ( v t , v t ) 1 / 2 g(v_t, v_t)^{1/2} g(vt,vt)1/2 表示了。

局部坐标系下如何计算?

再然后,我们要在立体投影后的坐标系下算一算这个曲线长度。在 “北极” 坐标下,根据式 ( 16 ) ( 17 ) (16)(17) (16)(17),切向量为: v t = − ( 2 + 1 ) π s i n π t ⋅ ∂ ∂ u 1 + ( 2 + 1 ) π c o s π t ⋅ ∂ ∂ u 2 \begin{aligned} v_t = -(\sqrt{2} + 1)\pi sin\pi t \cdot \frac{\partial}{\partial u_1} + (\sqrt{2} + 1) \pi cos\pi t \cdot \frac{\partial}{\partial u_2} \end{aligned} vt=(2 +1)πsinπtu1+(2 +1)πcosπtu2 那么内积计算为 g ( v t , v t ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) g ( ∂ ∂ u i , ∂ ∂ u j ) \begin{aligned} g(v_t, v_t) &= \sum_{i,j=1}^2 v(u^i)v(u^j) g(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}) \end{aligned} g(vt,vt)=i,j=12v(ui)v(uj)g(ui,uj) 关键就在于我们现在不知道 g ( ∂ ∂ u i , ∂ ∂ u j ) g(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}) g(ui,uj) 是什么值了,只能求助于基变换了,根据式 ( 12 ) (12) (12),有 ∂ ∂ u i = ∑ j ( ∂ ∂ x j ) ( ∂ x j ∂ u i ) \begin{aligned} \frac{\partial}{\partial u_i} = \sum_j (\frac{\partial}{\partial x^j}) (\frac{\partial x_j}{\partial u^i}) \end{aligned} ui=j(xj)(uixj) 那么内积计算为 g ( v t , v t ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) g [ ∑ k ( ∂ ∂ x k ) ( ∂ x k ∂ u i ) , ∑ l ( ∂ ∂ x l ) ( ∂ x l ∂ u j ) ] = ∑ i , j = 1 2 v ( u i ) v ( u j ) ( ∑ k ( ∂ x k ∂ u i ) g [ ∂ ∂ x k , ∑ l ( ∂ ∂ x l ) ( ∂ x l ∂ u j ) ] ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) ( ∑ k ( ∂ x k ∂ u i ) ∑ l ( ∂ x l ∂ u j ) g ( ∂ ∂ x k , ∂ ∂ x l ) ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) ( ∑ k , l ( ∂ x k ∂ u i ) ( ∂ x l ∂ u j ) g ( ∂ ∂ x k , ∂ ∂ x l ) ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) ( ∑ k ( ∂ x k ∂ u i ) ( ∂ x k ∂ u j ) ) = ∑ i , j = 1 2 v ( u i ) v ( u j ) ( [ ∂ x 1 ∂ u i ∂ x 2 ∂ u i ∂ x 3 ∂ u i ] [ ∂ x 1 ∂ u j ∂ x 2 ∂ u j ∂ x 3 ∂ u j ] ) = [ v ( u 1 ) v ( u 2 ) ] [ ∂ x 1 ∂ u 1 ∂ x 2 ∂ u 1 ∂ x 3 ∂ u 1 ∂ x 1 ∂ u 2 ∂ x 2 ∂ u 2 ∂ x 3 ∂ u 2 ] [ ∂ x 1 ∂ u 1 ∂ x 1 ∂ u 2 ∂ x 2 ∂ u 1 ∂ x 2 ∂ u 2 ∂ x 3 ∂ u 1 ∂ x 3 ∂ u 2 ] [ v ( u 1 ) v ( u 2 ) ] \begin{aligned} g(v_t, v_t) &= \sum_{i,j=1}^2 v(u^i)v(u^j) g[ \sum_k (\frac{\partial}{\partial x^k}) (\frac{\partial x_k}{\partial u^i}), \sum_l (\frac{\partial}{\partial x^l}) (\frac{\partial x_l}{\partial u^j}) ] \\ &= \sum_{i,j=1}^2 v(u^i)v(u^j) \left( \sum_k (\frac{\partial x_k}{\partial u^i}) g[ \frac{\partial}{\partial x^k}, \sum_l (\frac{\partial}{\partial x^l}) (\frac{\partial x_l}{\partial u^j}) ] \right) \\ &= \sum_{i,j=1}^2 v(u^i)v(u^j) \left( \sum_k (\frac{\partial x_k}{\partial u^i}) \sum_l (\frac{\partial x_l}{\partial u^j}) g(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l}) \right) \\ &= \sum_{i,j=1}^2 v(u^i)v(u^j) \left( \sum_{k,l} (\frac{\partial x_k}{\partial u^i}) (\frac{\partial x_l}{\partial u^j}) g(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l}) \right) \\ &= \sum_{i,j=1}^2 v(u^i)v(u^j) \left( \sum_{k} (\frac{\partial x_k}{\partial u^i}) (\frac{\partial x_k}{\partial u^j}) \right) \\ &= \sum_{i,j=1}^2 v(u^i)v(u^j) \left( \begin{bmatrix} \frac{\partial x_1}{\partial u^i} & \frac{\partial x_2}{\partial u^i} & \frac{\partial x_3}{\partial u^i} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial u^j} \\ \frac{\partial x_2}{\partial u^j} \\ \frac{\partial x_3}{\partial u^j} \end{bmatrix} \right) \\ &= \begin{bmatrix} v(u^1) & v(u^2) \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial u^1} & \frac{\partial x_2}{\partial u^1} & \frac{\partial x_3}{\partial u^1} \\ \frac{\partial x_1}{\partial u^2} & \frac{\partial x_2}{\partial u^2} & \frac{\partial x_3}{\partial u^2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial u^1} & \frac{\partial x_1}{\partial u^2} \\ \frac{\partial x_2}{\partial u^1} & \frac{\partial x_2}{\partial u^2} \\ \frac{\partial x_3}{\partial u^1} & \frac{\partial x_3}{\partial u^2} \end{bmatrix} \begin{bmatrix} v(u^1) \\ v(u^2) \end{bmatrix} \end{aligned} g(vt,vt)=i,j=12v(ui)v(uj)g[k(xk)(uixk),l(xl)(ujxl)]=i,j=12v(ui)v(uj)(k(uixk)g[xk,l(xl)(ujxl)])=i,j=12v(ui)v(uj)(k(uixk)l(ujxl)g(xk,xl))=i,j=12v(ui)v(uj) k,l(uixk)(ujxl)g(xk,xl) =i,j=12v(ui)v(uj)(k(uixk)(ujxk))=i,j=12v(ui)v(uj) [uix1uix2uix3] ujx1ujx2ujx3 =[v(u1)v(u2)][u1x1u2x1u1x2u2x2u1x3u2x3] u1x1u1x2u1x3u2x1u2x2u2x3 [v(u1)v(u2)] 哎!这不是成了式 ( 24 ) (24) (24) 了吗!原来式 ( 23 ) (23) (23) 辛辛苦苦从局部坐标系换回欧式空间就是为了这。先把这个式子算了吧: g ( v t , v t ) = ( 2 + 1 ) 2 π 2 [ − s i n π t c o s π t ] [ ( 2 + 1 ) 2 ( − c o s 2 π t + s i n 2 π t ) + 1 2 ( 2 + 2 ) 2 − ( 2 + 1 ) 2 c o s π t s i n π t ( 2 + 2 ) 2 ( 2 + 1 ) c o s π t ( 2 + 2 ) 2 − ( 2 + 1 ) 2 c o s π t s i n π t ( 2 + 2 ) 2 ( 2 + 1 ) 2 ( c o s 2 π t − s i n 2 π t ) + 1 2 ( 2 + 2 ) 2 ( 2 + 1 ) s i n π t ( 2 + 2 ) 2 ] [ ( 2 + 1 ) 2 ( − c o s 2 π t + s i n 2 π t ) + 1 2 ( 2 + 2 ) 2 − ( 2 + 1 ) 2 c o s π t s i n π t ( 2 + 2 ) 2 − ( 2 + 1 ) 2 c o s π t s i n π t ( 2 + 2 ) 2 ( 2 + 1 ) 2 ( c o s 2 π t − s i n 2 π t ) + 1 2 ( 2 + 2 ) 2 ( 2 + 1 ) c o s π t ( 2 + 2 ) 2 ( 2 + 1 ) s i n π t ( 2 + 2 ) 2 ] [ − s i n π t c o s π t ] = ( 2 + 1 ) 2 π 2 [ − s i n π t c o s π t ] [ − c o s 2 π t + s i n 2 π t + ( 2 − 1 ) 2 4 − c o s π t s i n π t 2 c o s π t 2 ( 2 + 1 ) − c o s π t s i n π t 2 c o s 2 π t − s i n 2 π t + ( 2 − 1 ) 2 4 s i n π t 2 ( 2 + 1 ) ] [ − c o s 2 π t + s i n 2 π t + ( 2 − 1 ) 2 4 − c o s π t s i n π t 2 − c o s π t s i n π t 2 c o s 2 π t − s i n 2 π t + ( 2 − 1 ) 2 4 c o s π t 2 ( 2 + 1 ) s i n π t 2 ( 2 + 1 ) ] [ − s i n π t c o s π t ] = ( 2 + 1 ) 2 π 2 [ − s i n π t 2 + 2 c o s π t 2 + 2 0 ] [ − s i n π t 2 + 2 c o s π t 2 + 2 0 ] = π 2 2 \begin{aligned} g(v_t, v_t) &= (\sqrt{2} + 1)^2\pi^2 \begin{bmatrix} -sin\pi t & cos\pi t \end{bmatrix} \begin{bmatrix} \frac{(\sqrt2+1)^2(-cos^2\pi t + sin^2\pi t) + 1}{2(2+\sqrt2)^2} & \frac{-(\sqrt2+1)^2 cos\pi tsin\pi t}{(2+\sqrt2)^2} & \frac{(\sqrt2+1) cos\pi t}{(2+\sqrt2)^2} \\ \frac{-(\sqrt2+1)^2 cos\pi tsin\pi t}{(2+\sqrt2)^2} & \frac{(\sqrt2+1)^2(cos^2\pi t - sin^2\pi t) + 1}{2(2+\sqrt2)^2} & \frac{(\sqrt2+1)sin\pi t}{(2+\sqrt2)^2} \end{bmatrix} \begin{bmatrix} \frac{(\sqrt2+1)^2(-cos^2\pi t + sin^2\pi t) + 1}{2(2+\sqrt2)^2} & \frac{-(\sqrt2+1)^2 cos\pi tsin\pi t}{(2+\sqrt2)^2} \\ \frac{-(\sqrt2+1)^2 cos\pi tsin\pi t}{(2+\sqrt2)^2} & \frac{(\sqrt2+1)^2(cos^2\pi t - sin^2\pi t) + 1}{2(2+\sqrt2)^2} \\ \frac{(\sqrt2+1) cos\pi t}{(2+\sqrt2)^2} & \frac{(\sqrt2+1) sin\pi t}{(2+\sqrt2)^2} \end{bmatrix} \begin{bmatrix} -sin\pi t \\ cos\pi t \end{bmatrix} \\ &= (\sqrt{2} + 1)^2\pi^2 \begin{bmatrix} -sin\pi t & cos\pi t \end{bmatrix} \begin{bmatrix} \frac{-cos^2\pi t + sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{-cos\pi tsin\pi t}{2} & \frac{cos\pi t}{2(\sqrt2+1)} \\ \frac{-cos\pi tsin\pi t}{2} & \frac{cos^2\pi t - sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{sin\pi t}{2(\sqrt2+1)} \end{bmatrix} \begin{bmatrix} \frac{-cos^2\pi t + sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{-cos\pi tsin\pi t}{2} \\ \frac{-cos\pi tsin\pi t}{2} & \frac{cos^2\pi t - sin^2\pi t + (\sqrt2-1)^2}{4} \\ \frac{cos\pi t}{2(\sqrt2+1)} & \frac{sin\pi t}{2(\sqrt2+1)} \end{bmatrix} \begin{bmatrix} -sin\pi t \\ cos\pi t \end{bmatrix} \\ &= (\sqrt{2} + 1)^2\pi^2 \begin{bmatrix} \frac{-sin\pi t}{2+\sqrt2} & \frac{cos\pi t}{2+\sqrt2} & 0 \end{bmatrix} \begin{bmatrix} \frac{-sin\pi t}{2+\sqrt2} \\ \frac{cos\pi t}{2+\sqrt2} \\ 0 \end{bmatrix} \\ &= \frac{\pi^2}{2} \end{aligned} g(vt,vt)=(2 +1)2π2[sinπtcosπt] 2(2+2 )2(2 +1)2(cos2πt+sin2πt)+1(2+2 )2(2 +1)2cosπtsinπt(2+2 )2(2 +1)2cosπtsinπt2(2+2 )2(2 +1)2(cos2πtsin2πt)+1(2+2 )2(2 +1)cosπt(2+2 )2(2 +1)sinπt 2(2+2 )2(2 +1)2(cos2πt+sin2πt)+1(2+2 )2(2 +1)2cosπtsinπt(2+2 )2(2 +1)cosπt(2+2 )2(2 +1)2cosπtsinπt2(2+2 )2(2 +1)2(cos2πtsin2πt)+1(2+2 )2(2 +1)sinπt [sinπtcosπt]=(2 +1)2π2[sinπtcosπt] 4cos2πt+sin2πt+(2 1)22cosπtsinπt2cosπtsinπt4cos2πtsin2πt+(2 1)22(2 +1)cosπt2(2 +1)sinπt 4cos2πt+sin2πt+(2 1)22cosπtsinπt2(2 +1)cosπt2cosπtsinπt4cos2πtsin2πt+(2 1)22(2 +1)sinπt [sinπtcosπt]=(2 +1)2π2[2+2 sinπt2+2 cosπt0] 2+2 sinπt2+2 cosπt0 =2π2 得到了一样的结果。为了简化计算,这里没有计算中间雅可比矩阵的自相乘积,但想计算的话还是可以算的,只是太过麻烦。这其中的矩阵 [ − c o s 2 π t + s i n 2 π t + ( 2 − 1 ) 2 4 − c o s π t s i n π t 2 c o s π t 2 ( 2 + 1 ) − c o s π t s i n π t 2 c o s 2 π t − s i n 2 π t + ( 2 − 1 ) 2 4 s i n π t 2 ( 2 + 1 ) ] [ − c o s 2 π t + s i n 2 π t + ( 2 − 1 ) 2 4 − c o s π t s i n π t 2 − c o s π t s i n π t 2 c o s 2 π t − s i n 2 π t + ( 2 − 1 ) 2 4 c o s π t 2 ( 2 + 1 ) s i n π t 2 ( 2 + 1 ) ] \begin{bmatrix} \frac{-cos^2\pi t + sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{-cos\pi tsin\pi t}{2} & \frac{cos\pi t}{2(\sqrt2+1)} \\ \frac{-cos\pi tsin\pi t}{2} & \frac{cos^2\pi t - sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{sin\pi t}{2(\sqrt2+1)} \end{bmatrix} \begin{bmatrix} \frac{-cos^2\pi t + sin^2\pi t + (\sqrt2-1)^2}{4} & \frac{-cos\pi tsin\pi t}{2} \\ \frac{-cos\pi tsin\pi t}{2} & \frac{cos^2\pi t - sin^2\pi t + (\sqrt2-1)^2}{4} \\ \frac{cos\pi t}{2(\sqrt2+1)} & \frac{sin\pi t}{2(\sqrt2+1)} \end{bmatrix} 4cos2πt+sin2πt+(2 1)22cosπtsinπt2cosπtsinπt4cos2πtsin2πt+(2 1)22(2 +1)cosπt2(2 +1)sinπt 4cos2πt+sin2πt+(2 1)22cosπtsinπt2(2 +1)cosπt2cosπtsinπt4cos2πtsin2πt+(2 1)22(2 +1)sinπt 就是局部坐标系下的度规张量,里面的元素 g ( ∂ ∂ u i , ∂ ∂ u j ) g(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}) g(ui,uj) t t t 的光滑函数,自然也是 p ∈ M p \in M pM 的光滑函数。

现在看来,式 ( 24 ) (24) (24) 中的 g U = J x ⊺ J x g_U = J_x^\intercal J_x gU=JxJx 就好理解多了,雅可比矩阵不仅是坐标变换矩阵,更是度规张量变换的方式。这里之所以变换到欧式空间中,可能是因为 γ ( t ) \gamma(t) γ(t) 本身是欧式空间下的参数方程。现在还不知道完全脱离欧式空间时,度规张量内的值怎么得到。

补充资料

这里还有个问题, g p ( X p , X p ) g_p(X_p, X_p) gp(Xp,Xp) 内积函数其实是接收两个任意的向量作为输入的,不仅仅是两个基向量。前面我们说它是一个 n × n n \times n n×n 的对称矩阵,是假设输入是一对基向量,再根据其线性性质,可拓展至整个向量空间。

你有没有听说过向量和函数其实是一回事?博客 From Vector to Function — Transformations, Basis, and Kernel Method 讲述了函数如何看作无穷维向量的。

这是一元函数的情况,自然可以想到二元函数就是无穷维的矩阵。【有限维向量是离散的,而无穷维向量是连续的】

回到 g p ( X p , X p ) g_p(X_p, X_p) gp(Xp,Xp),看作二元函数,若它仅接收基向量,就是离散的嘛,如下图,展示了 6 × 6 6 \times 6 6×6 的矩阵,代表着 6 6 6 个基向量之间求内积的结果。

既然是基向量,那向量空间中任何一点都可以表示为基向量的线性组合,再求内积,就可使此矩阵无穷无尽,即对称的无穷维矩阵。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
黎曼流形是微积分的一个分支,在数学和物理中起着重要的作用。它是一个具有黎曼度量的流形,黎曼度量是用于测量流形上的曲线或曲面弯曲程度的工具。黎曼度量是一个对称的二次型,它在每个切空间上定义了一个内积结构。这个内积结构允许我们定义曲线的长度和角度,并引入曲率的概念。 曲率是衡量流形弯曲程度的重要属性。在黎曼流形中,我们可以通过曲率张量来描述曲率。曲率张量是一个多维数组,它测量了相邻点上的切向量之间的变化。曲率张量的某些组合形式可以提供有关流形的重要几何性质的信息,例如曲面的高斯曲率和平均曲率。 黎曼流形还涉及其他重要的概念,如联络和测地线。联络是一种在流形上定义的切空间的导数操作。它允许我们在流形上定义平行移动和导数。测地线是没有加速度的曲线,也可以被认为是在流形上最短的路径。测地线可以用于研究质点在引力场中的运动以及光线在引力场中的传播。 黎曼流形的几何性质具有很大的应用价值。它们在物理学中的广义相对论中起着重要作用,用于描述时空的弯曲和引力。此外,它们还在数学领域中的拓扑学、微分几何学和偏微分方程等领域中发挥着重要作用。 总之,黎曼流形是一个重要的数学和物理学概念,用于描述流形的曲率和几何性质。它们在各种学科中都有广泛的应用,为我们理解和解释自然界中的现象提供了有力工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值