紧空间(Compact Space)

紧空间

紧空间属于点集拓扑学的范畴,它比较抽象,难以理解。这里先翻译一段 Wikipedia 对 Compact Space 的介绍。

第一句:在欧式空间中,有一个概念“有界的闭集”(a closed and bounded subset),紧性(Compactness) 试图将其泛化推广到一般的拓扑空间去

第二句:如何推广呢?思想就是:紧空间是没有“洞”(或缺失的点),也即它包含了所有极限值

第三句:确实,欧氏空间中的有界闭集确实是没有 “洞” 的。例如,开区间 ( 0 , 1 ) (0, 1) (0,1) 是有 “洞” 的,极限值 0 0 0 1 1 1 不在这个集合中,即两端有两个 “洞”;而闭区间 [ 0 , 1 ] [0, 1] [0,1] 则没有 “洞”。

第四句:有理数集 Q \mathbb{Q} Q 是欧式空间的子集,它有许多对应于无理数的 “洞”,这个好理解,无限有理数序列的极限可能是无理数,即 Q \mathbb{Q} Q 没有包含所有的极限值。

第五句:整个实数集 R \mathbb{R} R 也不是紧的,因为它不包含极限值 + ∞ +\infin + − ∞ -\infin ;而扩展实数线 [ − ∞ , + ∞ ] [-\infin, +\infin] [,+] 是紧的。

第六句:有许多方式可以使紧的概念明确化,这些方式对于度量空间往往是成立的,但对一般的拓扑空间则未必

在欧式空间中,这个概念(有界闭集是紧的)叫做 Heine–Borel theorem,右边的示意图有对其的一个简单解释。

经过这段的翻译,我们可以知道:紧的概念来源于欧式空间的有界闭集,在探索它的性质之后,想对其进行泛化推广。既然是泛化推广嘛,肯定是按着 “欧式空间 → \to 度量空间 → \to 拓扑空间” 的路子泛化

来看一个泛化

一个拓扑空间是列紧的,如果该空间中的每一个无穷点列都有一个无穷子列收敛到该拓扑空间中的某一点。

对拓扑空间中序列收敛的概念不太了解,于是看书:

基本的理解已经在书中做了笔记。与度量空间中的收敛概念区别就在于,拓扑空间中没有度量,只能用邻域的概念表示 “接近”。

可知,这个拓扑空间中的 sequentially compact 大概是和欧式空间的紧是一样的。然而下文说不一样:


在这里插入图片描述

也就是说,在一般的度量空间中,sequential compactness, limit point compactnesscompactness 是一样的;而在一般的拓扑空间中,并不一样。更有用的、标准的紧定义是就“空间的有限开覆盖”而言的。【拓扑空间太过抽象,就不说 limit point compactness 的概念了;有限开覆盖之后会说】

《高等工程数学》中给出了度量空间中列紧和紧的定义:

这里的列紧和紧都是就度量空间 X X X 的子集 A A A 而言的。整个空间是紧的时候,才叫紧空间。依据这个定义,在 R \mathbb{R} R 中,开区间 ( 0 , 1 ) (0, 1) (0,1) 以及 半开区间 [ 0 , 1 ) [0, 1) [0,1) 都是列紧的,虽然它们有 “孔”,子列收敛到区间外的 x ∈ R x \in \mathbb{R} xR,但总归收敛到了空间中;而 [ 0 , 1 ] [0, 1] [0,1] 中的子列都收敛到了 [ 0 , 1 ] [0, 1] [0,1] 中,所以它是紧的。这种度量空间中的定义就比较直观。然后在 Wikipedia 的后面会看到

用开覆盖定义紧的好处在于,局部成立的 information 可以推广至全局。至于那个 uniformly continuous 函数,咱不懂。

这是用开覆盖定义紧空间的正式定义。因为拓扑空间是最基础最抽象的,这种开覆盖对一般的度量空间也是成立的。

问题在于:为什么对于度量空间 “无孔” 和 “有限开覆盖” 是等价的?而对于一般的拓扑空间又不等价?

“无孔” 和 “有限开覆盖”

《点集拓扑讲义》中 “7.5 度量空间中的紧性” 一节有讲述,但悟性有限,看得似懂非懂。

直观地讲呢,这个 Lebesgue 数就是开覆盖 A \mathscr{A} A两个相邻开集重叠部分的最小长度,当然这是有条件的:“相邻” 意味着要重叠,而且这个重叠部分不能被其他开集覆盖。 { ( − ∞ , 1 ) } ∪ { ( n − 1 n ,   n + 1 + 1 n ) ∣ n ∈ Z + } \{(-\infin, 1)\} \cup \left\{(n-\frac{1}{n},\ n+1+\frac{1}{n}) | n \in \mathbb{Z}_+\right\} {(,1)}{(nn1, n+1+n1)nZ+} 不存在 Lebesgue 数的原因就是重叠长度 ( n + 1 + 1 n ) − ( n + 1 − 1 n + 1 ) = ( 1 n + 1 n + 1 ) (n+1+\frac{1}{n}) - (n+1-\frac{1}{n+1}) = (\frac{1}{n} + \frac{1}{n+1}) (n+1+n1)(n+1n+11)=(n1+n+11),当 n → + ∞ n \to +\infin n+ 时,重叠长度为 0 0 0,不符合要求 λ > 0 \lambda > 0 λ>0

这一段是说明,序列紧的度量空间的每一个开覆盖有一个 Lebesgue 数。这段证明的关键在于构造了一个收敛子序列,且序列中的每个点取自一个子集 E i E_i Ei,且其直径 d i a m ( E i ) < 1 i diam(E_i) < \frac{1}{i} diam(Ei)<i1,随着子列中点的序号的增大而减小。以至于一定会有:子集 E N k E_{N_k} ENk 被包含于收敛点 y y y 的某个基准开球中,无论这个开球多么小。进而开覆盖 A \mathscr{A} A 中的某个开集包含这个 E N k E_{N_k} ENk


这一段通过构建一个开覆盖 B = { B ( x , λ 3 ) } \mathscr{B} = \{B(x, \frac{\lambda}{3})\} B={B(x,3λ)},并证明其必能选出一个有限子覆盖 { B ( x 1 , λ 3 ) , B ( x 2 , λ 3 ) , … , B ( x n , λ 3 ) } \{B(x_1, \frac{\lambda}{3}), B(x_2, \frac{\lambda}{3}), \dots, B(x_n, \frac{\lambda}{3})\} {B(x1,3λ),B(x2,3λ),,B(xn,3λ)},进而根据 B ( x i , λ 3 ) ⊂ A i B(x_i, \frac{\lambda}{3}) \subset A_i B(xi,3λ)Ai 证明了任意开覆盖 A \mathscr{A} A 必有有限子覆盖。


上面说明了序列紧的度量空间一定是紧的,一定是有有限开覆盖的;反过来呢?如果有有限开覆盖的,一定是列紧的吗?

先看一个例子
( 0 , 1 ) (0, 1) (0,1) 有孔,则存在开覆盖 A = { ( − 1 ,   1 − 1 n )   ∣   n ∈ Z + } \mathscr{A} = \{(-1,~ 1-\frac{1}{n}) ~|~ n \in \mathbb{Z}_+\} A={(1, 1n1)  nZ+} 并无有限子覆盖。所以它不是紧的。

类似的,对于度量空间中 “有孔” 的子集,都能按类似的方式构造一个开覆盖,它没有有限子覆盖。所以,有有限开覆盖的子集一定 “无孔”,即一定是序列紧的。

等等!刚才还说 “有孔” 的 ( 0 , 1 ) (0, 1) (0,1) 是列紧呢?只能说说话的环境不一样,《高等工程数学》中的列紧意思应该是针对大空间 X X X 的子集 A ⊂ X A \subset X AX 的。而上面一段说的序列紧应该是针对整个空间的,即 ( 0 , 1 ) (0, 1) (0,1) 就是 “整个空间”。

到底泛化成什么样了

总的来说,紧的概念是要将欧式空间中的有界闭集概念推广至一般拓扑空间中,以利用其性质研究一些东西。然而,到了一般拓扑空间中,就只能用 “有限开覆盖” 去定义紧了,而且相当抽象,引发了好几个关于紧的概念,一时难以接受。

至于保留了什么性质,又拿这些性质去干嘛了,书中也没有具体的例子。

直观理解紧

【注】如果想更直观地理解紧、稠密、完备等概念,可以观看 B 站视频(实变、泛函)如何形象直观的理解稠密性、紧致性、完备性,讲的不错。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值