机器学习——支持向量机

支持向量机是一种通过找到最大化类别间隔的超平面来进行分类的机器学习模型。本文从直观角度解释了支持向量的概念,强调距离最大化和支持向量在确定最优超平面中的作用。接着介绍了将原问题转换为对偶问题的原因,特别是对偶问题在解决非凸优化问题中的优势,以及拉格朗日乘子法在满足KKT条件下的应用,确保了强对偶性,从而简化了求解过程。
摘要由CSDN通过智能技术生成

1.形象地理解支持向量机

在这里插入图片描述

简单来说,支持向量机是逻辑回归的升级版。逻辑回归=线性回归+激活函数,通过找到一个超平面如图中1,2,3,法向量(垂直于超平面)所指向的方向(朝上)为正类。这其中有一个问题:训练出能分类的超平面有很多,如何找到在实际使用中泛化效果最好的那一个超平面?
图解辨析:
若图中的2号超平面为最佳,但是在训练学习过程中机器没有找到,训练结果为1号或者3号超平面

  • 绿色数据点所在的位置(以2号超平面为标准),若训练学习得到的1号超平面,应该被分为类却被视为负类;
  • 红色数据所在的位置,若训练得到的是3号超平面,,应该被分为类却被视为正类;

怎么找到2号超平面?在数据中心找到正样本到某超平面的距离 和 负样本到该超平面的距离都达到最大,这就要排除你大我小,我大你小的情况,最终的结果就是找到平行2号超平面的线(高维就是超平面)将正负类划分(训练过程中)。

如何形象理解支持向量机这个词?想象最优超平面与支持向量之间安装的强力弹簧,来一个正类就将它弹到正类区域;来一个错误分类,掉在弹簧中,没有弹力&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>