1.形象地理解支持向量机
简单来说,支持向量机是逻辑回归的升级版。逻辑回归=线性回归+激活函数,通过找到一个超平面如图中1,2,3,法向量(垂直于超平面)所指向的方向(朝上)为正类。这其中有一个问题:训练出能分类的超平面有很多,如何找到在实际使用中泛化效果最好的那一个超平面?
图解辨析:
若图中的2号超平面为最佳,但是在训练学习过程中机器没有找到,训练结果为1号或者3号超平面
- 绿色数据点所在的位置(以2号超平面为标准),若训练学习得到的1号超平面,应该被分为正类却被视为负类;
- 红色数据所在的位置,若训练得到的是3号超平面,,应该被分为负类却被视为正类;
怎么找到2号超平面?在数据中心找到正样本到某超平面的距离 和 负样本到该超平面的距离都达到最大,这就要排除你大我小,我大你小的情况,最终的结果就是找到平行2号超平面的线(高维就是超平面)将正负类划分(训练过程中)。
如何形象理解支持向量机这个词?想象最优超平面与支持向量之间安装的强力弹簧,来一个正类就将它弹到正类区域;来一个错误分类,掉在弹簧中,没有弹力&#