目录
1.简单讲一讲数据扩增的定义
数据扩增(增强)是指实际不增加原始数据,只是对原始数据做一些变换,从而创造出更多的数据。
数据扩增的作用是增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。
2.数据扩增方法
仅从单样本数据来看,数据扩增针对一个样本的时候,就是对样本本身从颜色空间、尺度空间到样本空间进行操作。
对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。
2.1以transforms为例,了解变换
常见变换:
transforms.CenterCrop 对图片中心进行裁剪
transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop 对图像四个角和中心进行裁剪得到五分图像
transforms.Grayscale 对图像进行灰度变换
transforms.Pad 使用固定值进行像素填充
transforms.RandomAffine 随机仿射变换
transforms.RandomCrop 随机区域裁剪
transforms.RandomHorizontalFlip 随机水平翻转
transforms.RandomRotation 随机旋转
transforms.RandomVerticalFlip 随