数据扩增(增强),以及在pytorch的transforms中使用自定义函数

数据扩增(增强)通过变换创造更多样本,防止过拟合,提高模型泛化能力。在PyTorch的transforms中,常用变换包括颜色、尺度和样本空间操作。若自带函数无法满足需求,可以自定义函数。自定义函数需遵循一定格式,并能像自带函数一样使用,例如实现高斯模糊。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简单讲一讲数据扩增的定义

数据扩增(增强)是指实际不增加原始数据,只是对原始数据做一些变换,从而创造出更多的数据。
数据扩增的作用是增加训练集的样本,同时也可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。

2.数据扩增方法

仅从单样本数据来看,数据扩增针对一个样本的时候,就是对样本本身从颜色空间、尺度空间到样本空间进行操作。
对于图像分类,数据扩增一般不会改变标签;对于物体检测,数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签。

2.1以transforms为例,了解变换

常见变换:

transforms.CenterCrop 对图片中心进行裁剪 
transforms.ColorJitter 对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop  对图像四个角和中心进行裁剪得到五分图像
transforms.Grayscale  对图像进行灰度变换
transforms.Pad  使用固定值进行像素填充
transforms.RandomAffine  随机仿射变换 
transforms.RandomCrop  随机区域裁剪
transforms.RandomHorizontalFlip  随机水平翻转
 transforms.RandomRotation  随机旋转
transforms.RandomVerticalFlip  随
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值