在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以y坐标并不重要,因此只要知道开始和结束的x坐标就足够了。开始坐标总是小于结束坐标。平面内最多存在104个气球。
一支弓箭可以沿着x轴从不同点完全垂直地射出。在坐标x处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
Example:
输入:
[[10,16], [2,8], [1,6], [7,12]]
输出:
2
解释:
对于该样例,我们可以在x = 6(射爆[2,8],[1,6]两个气球)和 x = 11(射爆剩余气球)。
分析:
1.对于某个气球,至少需要1个弓箭
2.击穿这只气球的同时,尽可能多的击穿其他的
将气球按照左端点从小到大的顺序排序,然后每次遍历气球时,看这个气球在没在当前可射击区间内,在的话,就看用不用更新射击区间。如果不在当前可射击区间内的话,就开辟一个新的区间,射击数也就需要加1.
思考:
贪心规律
算法思路
模拟
模拟
实现:
class Solution {
public int findMinArrowShots(int[][] points) {
if(points ==null||points.length==0||points[0].length==0){
return 0;
}
Arrays.sort(points,new Comparator<int[]>() {//右端点排序
public int compare(int[] a, int[] b){
return a[1]-b[1];
}
});
//从左往右射击
int lastEnd = points[0][1];//题上没说只在第一区间,所以有可能在第二象限
int minShots=1;
for(int i=1;i<points.length;i++){
if(lastEnd<points[i][0]){
lastEnd=points[i][1];
minShots++;
}
}
return minShots;
}
}
注意:
新写的compara函数里面返回序列是
return a[1]-b[1];
这就是说明是按照points二维数组中的行中的第二列(下标是1)进行排序的