用最少数量的箭引爆气球
题目描述:
在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
输入输出样例
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
题解:
本题类似之前的去除重叠区间问题,采用排序+贪心算法;由于气球的宽度是固定的,我们只需要把所有的气球按照右边界的大小进行上升排序,然后将第一只箭的位置尽可能的在第一个气球的右边,这样第一支箭引爆的气球的数量是最多的,然后将引爆的气球都排除掉,从下一个未引爆的气球的右边界为开始,第二只箭尽可能的在这个气球的右边,以此类推,总共所需的箭最少。
具体代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class L452 {
public:
int findMinArrowShots(vector<vector<int>>& points) {
if (points.empty()) {
return 0;
}
sort(points.begin(), points.end(), [](const vector<int>& u, const vector<int>& v) {
return u[1] < v[1];
});//先排序
int pos = points[0][1];
int ans = 1;
for (const vector<int>& balloon : points) {
if (balloon[0] > pos) {
pos = balloon[1];
++ans;
}
}
return ans;
}
};