机器学习--朴素贝叶斯分类函数

本文深入浅出地介绍了朴素贝叶斯分类器的理论基础,包括贝叶斯决策理论、条件概率、全概率公式和贝叶斯推断。通过实例解释了朴素贝叶斯的条件独立性假设,并展示了如何用Python实现一个简单的言论过滤器。文章最后总结了朴素贝叶斯分类器的优缺点。
摘要由CSDN通过智能技术生成

一、前言

朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。

本篇文章将从朴素贝叶斯推断原理开始讲起,通过实例进行辅助讲解。最后,使用Python3编程实现一个简单的言论过滤器。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

二、朴素贝叶斯理论

朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。

1、贝叶斯决策理论

假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

  • 如果p1(x,y)>p2(x,y),那么类别为1
  • 如果p1(x,y)<p2(x,y),那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。已经了解了贝叶斯决策理论的核心思想,那么接下来,就是学习如何计算p1和p2概率。

2、条件概率

在学习计算p1 和p2概率之前,我们需要了解什么是条件概率(Condittional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

根据文氏图,可以很清楚地看到在事件B发生的情况下,事件A发生的概率就是P(A∩B)除以P(B)。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

因此,

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

同理可得,

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

所以,

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这就是条件概率的计算公式。

3、全概率公式

除了条件概率以外,在计算p1和p2的时候,还要用到全概率公式,因此,这里继续推导全概率公式。

假定样本空间S,是两个事件A与A'的和。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

上图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。

在这种情况下,事件B可以划分成两个部分。

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

在上一节的推导当中,我们已知

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

所以,

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

机器学习实战教程(四):朴素贝叶斯基础篇之言论过滤器

4、贝叶斯推断

对条件概率公式进行变形,可以得到如下形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值