数据处理时如何解决噪声数据?

一、什么是噪声

       在机器学习中我们在独立随机抽样的时候会出现一些搞错的信息,这些错误的数据我们称之为杂讯(或者噪音  noise),一般可以归结为一下两种(以二分为例):

输出错误:

1.同样的一笔数据会出现两种不同的评判  

2.在同样的评判下会有不同的后续处理。

输入错误:

1.在收集数据的时由于数据源的随机性会出现错误(比如说,客户在填信息的时候出现的误填)

实际应用中的数据基本都是有干扰的,还是用信用卡发放问题举例子:

 

 

噪声产生原因:

  1. 标记错误:应该发卡的客户标记成不发卡,或者两个数据相同的客户一个发卡一个不发卡;
  2. 输入错误:用户的数据本身就有错误,例如年收入少写一个0、性别写反了什么的。

二、噪声数据的处理方法

常见的噪声数据的处理方法:分箱;聚类;计算机和人工检查结合;回归

1、分箱

分箱方法是一种简单常用的预处理方法,通过考察相邻数据来确定最终值。所谓“分箱”,实际上就是按照属性值划分的子区间,如果一个属性值处于某个子区间范围内,就称把该属性值放进这个子区间所代

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值