一、什么是噪声
在机器学习中我们在独立随机抽样的时候会出现一些搞错的信息,这些错误的数据我们称之为杂讯(或者噪音 noise),一般可以归结为一下两种(以二分为例):
输出错误:
1.同样的一笔数据会出现两种不同的评判
2.在同样的评判下会有不同的后续处理。
输入错误:
1.在收集数据的时由于数据源的随机性会出现错误(比如说,客户在填信息的时候出现的误填)
实际应用中的数据基本都是有干扰的,还是用信用卡发放问题举例子:
噪声产生原因:
- 标记错误:应该发卡的客户标记成不发卡,或者两个数据相同的客户一个发卡一个不发卡;
- 输入错误:用户的数据本身就有错误,例如年收入少写一个0、性别写反了什么的。
二、噪声数据的处理方法
常见的噪声数据的处理方法:分箱;聚类;计算机和人工检查结合;回归
1、分箱
分箱方法是一种简单常用的预处理方法,通过考察相邻数据来确定最终值。所谓“分箱”,实际上就是按照属性值划分的子区间,如果一个属性值处于某个子区间范围内,就称把该属性值放进这个子区间所代