多个独立样本的非参数检验—两两比较--SPSS软件

再次使用SPSS实现Kruskal-Wallis H检验,和Holm-Bonferroni Correction校正,发现忘记怎么操作了,简单记录。
声明:所有数据仅为记录SPSS操作的随意设定值,不具有市场参考价值

研究,不同人群对某影视作品喜爱程度不同,记录28名研究对象的年龄及打分
年龄分为四组,分别为儿童组(children),青年组(youth),中年组(middle),老年组(elderly),分数满分10分

1. 打开SPSS,输入数据
在这里插入图片描述
2. 选项卡:分析-非参数检验-独立样本
目标:选择自动比较不同组间的分布在这里插入图片描述
字段:分数添加到score,group添加到组
在这里插入图片描述
设置:选择自定义检验的Kruskal-Wallis 单因素ANOVE(k样本),成对比较。也可不做选择,默认根据自动选择校验。
在这里插入图片描述
3. 运行
在这里插入图片描述
4. 结果
在这里插入图片描述
双击上图,弹出模型浏览器
在这里插入图片描述
右下角-视图-改为成对比较
在这里插入图片描述
5. 分析
上图Sig.为Kruskal-Wallis H检验后的p值,调整显著性为Holm-Bonferroni Correction校正后的p值。

### MATLAB 中 ANOVA 事后检验方法 #### 使用 `multcompare` 函数进行 Dunnett 法事后多重比较 当ANOVA测试显示不同组间存在显著差异时,通常需要进一步的事后分析来确定具体哪两组之间的差异具有统计学意义。MATLAB 提供了多种工具来进行这些后续的成对比较。 对于特定类型的对比需求,比如与对照组相比其他所有实验组的情况,Dunnett 测试是一个合适的选择[^1]。下面展示了一个简单的例子,在这个例子中假设已经完成了一次单因素方差分析,并得到了 p 值表明至少有一组与其他组有明显区别;现在要找出具体的那些组不同于控制组: ```matlab % 创建一些模拟数据集作为示例输入 groups = {'Control', 'TreatmentA', 'TreatmentB'}; data = [randn(20,1)+1; randn(20,1)-1; randn(20,1)*2]; groupLabels = repmat(groups(:), [20, 1]); % 执行单向方差分析 (One-way ANOVA) [p, tbl, stats] = anova1(data, groupLabels); % 如果p<0.05,则继续执行多重要求校正后的均值比较 if p < .05 % 进行基于Tukey-Kramer 方法的整体均值比较(默认) cld = multcompare(stats); % 或者指定为Dunnett's test 来专门针对对照组和其他各治疗组间的差异 dunnettResults = multcompare(stats,'CType','dunnett'); end ``` 上述代码片段展示了如何利用 `anova1()` 和 `multcompare()` 函数组合起来实现基本的数据预处理、ANOVA 分析以及随后采用 Dunnett 的方法进行针对性更强的事后比较过程。注意这里的 `'CType'` 参数设置为了 `'dunnett'` ,从而指定了所使用的多重比较程序类型[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值