直方图和柱状图浅析

直方图和柱状图因其长得很相似,故常引起初学者的疑惑,但其实二者存在很大的区别。

在这里插入图片描述
在这里插入图片描述
上述两图中,前图为柱状图,后图为直方图。单从视觉上看来两种图很相似,但是细心点也可以发现柱状图的图中是有间隔的,而直方图没有,但是为什么呢?他们又分别用于什么情况?

柱状图和直方图其实在本质上的功能就是不同的,柱状图常描述多个对象的某个值的不同,而直方图常描述同一个值在不同区间中的分布。听起来有点抽象,下面举个栗子。

比如对某地区PM2.5的采样,每小时采集一次,柱状图则将每小时的PM2.5的数值都各画成一个柱状条,每个条的高度表示该小时里PM2.5的值。而直方图则将所测得的PM2.5的值的分布进行划分,比如讲值分为(0,20],(20,40],(40,60],(60,80]…,然后将每个区间作为一个柱状条的横轴,其高度表示所测得数据中在该区间中出现的次数,比如PM2.5的值在(0,20]这个范围里出现了5次,则其高度就为5。

而在画图中,柱状图一般记为为bar,直方图则记为hist

<think>好的,用户现在想了解直方图柱状图之间的区别以及它们的应用场景。我需要先回顾一下相关的知识,然后结合之前的引用内容来组织回答。 首先,根据引用[2],直方图展示数据的分布,而柱状图比较数据的大小。直方图通常用于显示数值在某个区间内的频数,比如重量区间内的苹果数量。而柱状图则用于比较不同类别的数据,比如不同水果的销量。这一点是关键区别,需要重点强调。 接下来,引用[3]提到,柱状图的x轴是分类,而直方图的x轴是连续的数据区间。此外,柱状图的柱子之间有间隔,而直方图的柱子通常紧密排列,没有间隔。这有助于用户直观区分两者。 然后,应用场景方面。引用[1]中的例子说明柱状图适用于比较不同类别的数值,如不同年份的销量对比。而直方图用于展示数据分布,如成绩分布或年龄分布。需要分点说明两者的适用情况。 可能用户在使用图表时容易混淆,所以需要明确两者的适用场景,并给出实际例子。比如直方图用于查看数据集中趋势,柱状图用于对比不同组的数据。 还要注意是否需要提到绘图工具,比如Matplotlib中的不同函数,如ax.bar()ax.hist(),根据引用[3]引用[4],可以简要说明。 最后,总结两者的核心区别,并确保回答结构清晰,分点列出,方便用户理解。</think>### 直方图柱状图的区别及应用场景 #### 一、核心区别 1. **数据展示目标不同** - **直方图**:展示**数据分布**,关注数值区间内的频数或概率密度。例如,统计学生成绩在$60-70$分区间内的人数[^2]。 - **柱状图**:用于**比较不同类别的数值大小**。例如,对比苹果、香蕉、橘子三种水果的销量[^1]。 2. **横轴数据类型不同** - 直方图的横轴是**连续数值区间**(如$0-10$, $10-20$),且区间通常无间隔; - 柱状图的横轴是**离散分类**(如“苹果”“香蕉”),类别之间有明确间隔[^3]。 3. **柱子排列方式不同** - 直方图的柱子紧密相连,无间隙; - 柱状图的柱子之间有明显间隔(可通过`ax.bar()`的`width`参数调整)[^3]。 #### 二、应用场景 1. **直方图的典型场景** - 分析数据分布特征(如正态分布、偏态分布); - 统计连续变量的频数(如年龄分布、考试成绩分段统计)[^2]。 **示例**:分析某班级数学成绩的分布,横轴为分数段,纵轴为人数。 2. **柱状图的典型场景** - 对比不同类别的数值(如不同季度销售额、不同城市人口); - 展示分类数据的排名(如App下载量对比)[^1][^3]。 **示例**:横向柱状图比较10个国家GDP总量,分类多时更清晰[^1]。 #### 三、Python实现差异 - **直方图**:使用`plt.hist(data, bins=10)`,`bins`指定区间划分; - **柱状图**:使用`ax.bar(categories, values)`,需明确分类对应值[^3][^4]。 **代码片段对比**: ```python # 直方图(数据分布) plt.hist(student_scores, bins=5, edgecolor='black') # 柱状图(类别对比) categories = ['A', 'B', 'C'] values = [20, 35, 30] plt.bar(categories, values) ``` #### 四、总结 | 特征 | 直方图 | 柱状图 | |--------------|--------------------------|------------------------| | 数据目标 | 分布情况 | 数值比较 | | 横轴类型 | 连续区间 | 离散分类 | | 柱子间隔 | 无间隔 | 有间隔 | | 适用场景 | 统计频数、分布分析 | 分类对比、排名展示 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值