GEE学习资料

### 关于Google Earth Engine与深度学习的结合应用 #### 环境搭建 对于希望在Google Earth Engine(GEE)平台上开展深度学习项目的开发者而言,环境配置是一个重要的起点。当前网络上的资源相对有限,但已有部分平台提供了基础指导[^1]。这些建议涵盖了如何设置必要的开发工具链以及理解基本概念。 #### 数据准备流程 为了使深度学习算法能够在GEE环境中有效运行,数据准备工作至关重要。具体来说,需要先通过GEE预处理影像并将其转换成适合机器学习框架使用的格式——例如`tfrecord`文件形式存储的数据集。之后再将这些经过特殊打包后的资料下载至本地计算机,在那里可以进一步利用诸如TensorFlow这样的库来进行更深入的研究工作[^3]。 #### 模型选择与发展方向 传统上,在GEE中执行的土地覆盖分类任务大多依赖像随机森林之类的统计学方法;然而这类技术往往忽略了空间关联性和局部模式识别的重要性。相比之下,采用卷积神经网络(CNNs)或其他类型的深层架构能够更好地捕捉图像中的复杂特征,并提高预测精度。尤其是在面对高分辨率遥感图片时,基于深度学习的方法展现出了显著优势[^2]。 ```python import tensorflow as tf from google.cloud import storage def load_data_from_gcs(bucket_name, source_blob_name): """Loads data from Google Cloud Storage.""" client = storage.Client() bucket = client.bucket(bucket_name) blob = bucket.blob(source_blob_name) with blob.open("rb") as f: dataset = tf.data.TFRecordDataset(f) return dataset ``` 此代码片段展示了如何从谷歌云储存加载预先处理过的`.tfrecord`文件进入TensorFlow程序中进行后续分析操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值