Google Earth Engine(GEE)深度学习入门教程- GEE导出篇

GEE导出篇

官方教程:TFRecord 和地球引擎
Code_editor_diagram

在GEE的JS Code Editor中,我们按照我们的需要去处理对应的遥感影像,得到处理后Image影像。为了导出后读取数据,在导出前一定清楚每个波段的名称(不然没法读取)。深度学习数据集所需数据以为patch为单位,所以需要对整个遥感影像进行裁剪,我探索出来GEE能实现的裁剪方法的有2种滑窗裁剪、随机裁剪

随机裁剪:随机选择生成多个样点,然后裁剪样点周围的邻域,导出。用作构造数据集

滑窗裁剪:设定步幅和窗口大小,裁剪完整影像,导出。用作大范围推理验证

滑窗裁剪

TFRecord_diagram

导出有2个重要参数:patchSizekernelSize。patchSize 是指滑窗不重叠区域的大小,kernelSize是指滑窗重叠缓冲区的大小。例如:patchSize 为32,kernelSize为32,则导出的图像单个大小为64*64,中间的32*32为不重叠区域,边缘的16格像素为缓冲区大小。导出图像时,数据按通道、高度、宽度 (CHW) 排序。导出可以拆分为多个 TFRecord 文件,每个文件包含一个或多个 大小的 patches ,这是用户在导出中指定的。文件的大小(以字节为单位是用户在参数中指定的)。

代码如下:

Export.image.toCloudStorage({
    image : image.toFloat(),         //保证所有层数据类型统一,导出Image影像
    description : desc,              //任务名称
    bucket : BUCKET,                 //存储桶名称
    fileNamePrefix : FOLDER + '/' + desc,      //保存的路径及文件名
    region : ee.Feature(savePolys.get(g)).geometry(),//范围矢量
    scale : 10,                     //分辨率
    fileFormat : 'TFRecord',        //格式
    maxPixels : 1e13,                      
    formatOptions : {
      'patchDimensions': [32,32], //核心区大小
      'kernelSize': [32,32],     //缓冲区
      'compressed': true,
      'maxFileSize': 104857600*10 //400M 
      }
     });

导出结果:

image-20240108172111841

导出内容除了包含TFRecord格式的数据包之外,还有一个json格式文件,文件内部保存着影像的裁剪结果和地理位置信息,例如:

{
  "projection": {
    "crs": "EPSG:4326",
    "affine": {
      "doubleMatrix": [8.983152841195215E-5, 0.0, 116.04113446753695, 0.0, -8.983152841195215E-5, 33.789500591456914]
    }
  },
  "patchDimensions": [32, 32],
  "patchesPerRow": 19,
  "totalPatches": 285
}

其中:crs为投影坐标系、doubleMatrix为地理仿射变换矩阵、patchDimensions为不重叠区域大小、patchesPerRow为裁剪区域内每行得到的样本数量、totalPatches为总的patch数量。这些信息都是为了将裁剪后的普通图像恢复为遥感影像。

随机裁剪

随机生成样点,然后裁剪样点周围的邻域,导出。主要用作构造数据集,扩充数据集的样本量。

因为本文的使用的预处理过程比较复杂,数据量比较大,直接对整幅影像导出会导致GEE用户内存溢出,所以本文对研究区进行区块划分

划分训练、验证、测试区域的代码分为以下几个步骤:

  1. 确定划分区域的左下角和右上角的经纬度坐标(corner1、corner2)
  2. 设定横向纵向划分块数:sliceN = 10
  3. 生成区块
  4. 使用ee.Filter.isContained去除不被包含在研究区的区块
  5. 按照6:2:2比例划分区块为训练、验证、测试区块
  6. 导出区块矢量为geometryLayer并保存到Map.drawingTools()中

在这里插入图片描述

//将研究区划分为多个区域,并按照6:2:2的比例划分训练、验证、测试区域,
  //!!!仅需执行一次,手动将区域格式变化为featureColection
  var roi = ee.FeatureCollection('TIGER/2018/States').filter(ee.Filter.eq('NAME', 'Illinois'));
  // 将研究区域按照 10*10 的大小进行分割,循环处理子区域
  var corner1 = [-91.70112615545109, 36.986063288694794]
  var corner2 = [-87.30659490545109, 42.60259690092805]
  var sliceN = 10;
  var slicePolysList = ee.List([])
  for (var x = corner1[0]; x < corner2[0]; x += (corner2[0]-corner1[0])/sliceN) {
  for (var y = corner1[1]; y < corner2[1]; y += (corner2[1]-corner1[1])/sliceN) {
    var x2 = x+(corner2[0]-corner1[0])/sliceN
    var y2 = y+(corner2[1]-corner1[1])/sliceN
    var area = ee.Geometry.Rectangle(x, y, x2, y2);
    slicePolysList = slicePolysList.add(ee.Feature(area))
  }
  }
  var slicePolys = ee.FeatureCollection(slicePolysList)   // 去除不被完全包含的区域
                  .filter(ee.Filter.isContained({leftField: '.geo',rightValue: roi.geometry()}))
                  .randomColumn("random", 1)
  var trainPolys = slicePolys.filter(ee.Filter.rangeContains("random",0,0.6))
  var evalPolys = slicePolys.filter(ee.Filter.rangeContains("random",0.6,0.8))
  var testPolys = slicePolys.filter(ee.Filter.rangeContains("random",0.8,1))
  var geometryLayer = ui.Map.GeometryLayer({geometries: [trainPolys.geometry().getInfo()], name: 'trainPolys',color: 'green'});
  // 将 GeometryLayer 添加到地图
  Map.drawingTools().layers().add(geometryLayer);
  var geometryLayer = ui.Map.GeometryLayer({geometries: [evalPolys.geometry().getInfo()], name: 'evalPolys',color: 'red'});
  // 将 GeometryLayer 添加到地图
  Map.drawingTools().layers().add(geometryLayer);
  var geometryLayer = ui.Map.GeometryLayer({geometries: [testPolys.geometry().getInfo()], name: 'testPolys',color: 'blue'});
  // 将 GeometryLayer 添加到地图
  Map.drawingTools().layers().add(geometryLayer);

区块划分完成后,我们使用循环逐个区块随机采样并进行导出,单个样本大小为64*64。单次采样过多也会内存溢出,所以一个区块也要采样多次,每次采样少一点。

//此时需要让单次处理的区域尽可能小
//https://developers.google.com/earth-engine/guides/tf_examples
var BUCKET = 'yqs'
var FOLDER = 'yangfangVal'


var TRAINING_BASE = 'training_patches'
var EVAL_BASE = 'eval_patches'
var TEST_BASE = 'test_patches'

var BANDS  = ["B2","B3","B4","B5","B6","B7","B8","B8A","B11","B12"]
var RESPONSE = 'soya'
var FEATURES = BANDS.concat([RESPONSE])
print(FEATURES)

var N = 160       //单个区域内的采样数量。
var n = 16      //单区域采样次数。增大n,可以减少单次采样的数量,防止出现Computed value is too large.错误 !但是导出速度会变慢
var KERNEL_SIZE = 64    //减小此值可以防止出现采样时出现 Computed value is too large. 128导出数据包太大了
var KERNEL_SHAPE = [KERNEL_SIZE, KERNEL_SIZE]
var list = ee.List.repeat(1, KERNEL_SIZE)
var lists = ee.List.repeat(list, KERNEL_SIZE)
var kernel = ee.Kernel.fixed(KERNEL_SIZE, KERNEL_SIZE, lists)

trainPolys = trainPolys.toList(trainPolys.size());  // 将 FeatureCollection 转换为 FeatureList
evalPolys = evalPolys.toList(evalPolys.size());  
testPolys = testPolys.toList(testPolys.size());  

var savePolys = testPolys
var BASE = TEST_BASE//TRAINING_BASE;//EVAL_BASE//TEST_BASE
//为了保证内存不溢出,在处理图片的时候尽可能处理较小块的区域
for (var g = 0; g < savePolys.size().getInfo(); g++) {
  var geomSample = ee.FeatureCollection([]); // 用于存储采样点的 FeatureCollection
  // 数据集标签的加载函数,请根据自己需求对应修改。
  var soya = CDLlib.getCDL()
  //影像预处理函数,请根据自己需求对应修改。
  var S2 = S2lib.getS2Image(BANDS,ee.Feature(savePolys.get(g)).geometry())
  
  var image = S2.addBands([soya]).rename(FEATURES)
  //给多个数据包命名
  var desc = BASE + '_g' + g.toString();
  print(image)
  var arrays = image.toFloat().neighborhoodToArray(kernel)
  for (var i = 0; i < n; i++) {
  	var sample = arrays.sample({
       region: ee.Feature(savePolys.get(g)).geometry(),
       scale: 10,
       numPixels: N / n,
       seed: i,
       tileScale: 8
     });
  	// print(sample.size())
  	geomSample = geomSample.merge(sample); // 将采样点合并到 geomSample 中
  }
  
  // Map.addLayer(image,{bands: ['soya']},desc);//调试用
  // //print(geomSample.size())//调试用
  // Map.addLayer(ee.Feature(savePolys.get(g)).geometry().buffer(640),[],desc);//调试用
   
  var task = Export.table.toCloudStorage({
     collection: geomSample,
     description: desc,
     bucket: BUCKET,
     fileNamePrefix: FOLDER + '/' + desc,
     fileFormat: 'TFRecord',
   });
}
### Google Earth Engine (GEE) 图像导出不完整问题解决方案 当遇到 GEE 中图像导出只显示部分内容的情况时,通常是因为在准备要导出的数据集过程中出现了某些配置不当之处。为了确保完整的图像能够被成功导出到目标位置,建议采取以下措施: #### 方案一:影像预处理阶段优化 在影像筛选和预处理阶段即完成对所需波段的选择与组合操作,这有助于减少后期可能出现的问题并简化整个流程[^2]。 对于 Landsat 数据而言,在构建最终用于导出的对象之前应先执行云层遮蔽移除、辐射校正以及其他必要的质量控制步骤。这些前期准备工作不仅提高了数据的质量也使得后续的分析更加可靠有效。 #### 方案二:调整 `Export.image.toDrive` 参数设置 如果已经完成了上述提到的所有预处理工作但仍存在导出结果缺失的现象,则可能是由于设置了不合适的参数所引起的。此时可以通过修改 `Export.image.toDrive()` 方法内的选项来解决问题: - **scale**: 设置适当的空间分辨率(米/像素),该值决定了输出栅格文件中每个单元格代表的实际地面面积大小; - **region**: 明确指定地理范围边界框作为裁剪条件,保证仅限于感兴趣的特定区域内提取信息而不受其他因素干扰; - **maxPixels**: 如果原始场景覆盖范围较大以至于超过了默认的最大允许像素数量限制(1亿),则需增加此阈值以便容纳更多细节层次的信息量。 下面是一个 Python 版本的例子展示了如何正确调用 API 函数实现高质量全幅面地图产品的生成过程: ```python import ee ee.Initialize() # 定义研究区 aoi = ee.Geometry.Rectangle([min_lon, min_lat, max_lon, max_lat]) # 加载遥感影像集合 image_collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') \ .filterBounds(aoi).first() # 假设取第一个符合条件的时间点 # 执行导出任务 task = ee.batch.Export.image.toDrive( image=image_collection, description='Complete_Region_Image', folder='gee_exports', fileNamePrefix='complete_image', scale=30, # 米/像素 region=aoi.bounds().getInfo()['coordinates'], fileFormat='GeoTIFF', maxPixels=1e9 # 超过常规上限以适应大面积区域需求 ) task.start() print("Task submitted.") ``` 以上代码片段通过精确设定各个重要参数确保了整个 AOI 内部的内容都被完整记录下来,并且采用了较大的 `maxPixels` 来支持更广阔的地域尺度上的应用需求。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值