敌兵布阵
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 73533 Accepted Submission(s): 30844
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:”你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:”我知错了。。。”但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<queue>
using namespace std;
const int maxn=50005;
int Tree[maxn<<2];
void Push_Up(int root)
{
Tree[root]=Tree[root<<1]+Tree[root<<1|1];
}
void Build(int root,int left,int right)
{
if(left==right)
{
scanf("%d",&Tree[root]);
return;
}
int mid=(left+right)>>1;
Build(root<<1,left,mid);
Build(root<<1|1,mid+1,right);
Push_Up(root);
}
void Update(int root,int left,int right,int find_point,int num)
{
if(left==right&&right==find_point)
{
Tree[root]+=num;
return;
}
int mid=(left+right)>>1;
if(find_point<=mid)
Update(root<<1,left,mid,find_point,num);
else
Update(root<<1|1,mid+1,right,find_point,num);
Push_Up(root);
}
int Query(int root,int left,int right,int find_left,int find_right)
{
if(find_left==left&&find_right==right)
return Tree[root];
int mid=(left+right)>>1;
if(find_right<=mid)
return Query(root<<1,left,mid,find_left,find_right);
else if(find_left>mid)
return Query(root<<1|1,mid+1,right,find_left,find_right);
else
return Query(root<<1,left,mid,find_left,mid)+Query(root<<1|1,mid+1,right,mid+1,find_right);
}
int main()
{
int T;
scanf("%d",&T);
for(int casen=1;casen<=T;casen++)
{
int N;
scanf("%d",&N);
Build(1,1,N);
printf("Case %d:\n",casen);
char str[6];
getchar();
while(scanf("%s",str)&&str[0]!='E')
{
int num_i,num_j;
scanf("%d%d",&num_i,&num_j);
getchar();
if(str[0]=='Q')
printf("%d\n",Query(1,1,N,num_i,num_j));
else if(str[0]=='A')
Update(1,1,N,num_i,num_j);
else if(str[0]=='S')
Update(1,1,N,num_i,-num_j);
}
}
return 0;
}