模型、算法、数据模型、模型结构是什么?它们之间有什么关联和区别?

本文详细解释了模型、算法、模型结构、数据模型和训练在机器学习中的定义和关系,涵盖了算法的一般定义、机器学习算法的特点,以及不同类型的模型如线性模型、决策树、支持向量机等。同时讨论了算法和模型的区别,以及训练过程在模型构建中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:大数据与人工智能

导读

我们在看一些机器学习、人工智能、数据仓库方面的资料时,经常会出现“神经网络”、“深度学习算法”、“非监督学习”、“大模型”、“逻辑模型”等高频词汇。这些词语有时会在同一篇文章中交叉出现,看似描述的是同一件事情,但所要表达的意思似乎又不尽相同,很容易就被绕晕了。

这里先给出“模型 、算法、模型结构、数据模型、训练”5个概念的精简定义:

  • 模型:现实世界的数学表示或模拟,它是指一种结果。

  • 算法:执行特定任务的明确步骤序列。

  • 模型结构:模型的特定框架或架构。

  • 数据模型:描述数据对象、其关系及与其相关的操作的抽象结构。

  • 训练:使用数据调整模型参数以改进模型性能的过程。

很抽象,这里先提个问题:“支持向量机到底是指什么?模型、算法亦或其它?”答案会在最后揭晓。

一、算法

1、算法定义

算法的定义有许多版本,但其核心思想是一致的。算法可以被定义为:一个明确的、有序的、有限的步骤集合,用于解决一个特定的问题或执行一个特定的任务。这个定义是非常通用的,适用于从最简单的日常生活任务(例如烹饪食谱)到复杂的计算机科学问题的算法。

让我们详细分析这个定义:

  1. 明确 (Clear):算法的每一步都应该是清晰、无歧义的,这样任何人都可以理解并按照算法的指示进行。

  2. 有序 (Ordered):步骤的顺序是固定的,这确保了每次运行算法时,它都会产生相同的结果(如果输入和初始条件保持不变)。、

  3. 有限 (Finite):算法的执行不能无限期地进行;经过一定数量的步骤后,它应该结束。

  4. 解决问题或执行任务:算法的目的是解决某个特定的问题或执行某个特定的任务,无论是计算数字、排序列表,还是其他更复杂的任务。

事实上,我们可以把任何使计算机能够按照我们预定目标运行的方法称为“算法”,不仅仅包括上面的举例,在计算机领域常见的“冒泡排序”等基础算法都可以算作“算法”的范畴,以下是冒泡算法的步骤流程:

在这里插入图片描述

2、机器学习算法定义

在机器学习和人工智能领域,"算法"这一词语通常具有特定的含义和上下文。在这些领域,算法通常指的是:一种通过数据或经验自动改进性能或逐渐适应某一任务的方法这个算法定义相对于传统算法的特殊之处在于"学习"和"适应"。让我们详细分析这个定义:

  1. 通过数据或经验:机器学习算法通常需要数据集来进行训练。这些数据允许算法识别模式、做出预测或完成其他任务。

  2. 自动改进性能:随着时间的推移和更多的数据输入,机器学习算法旨在提高其任务的完成质量,无论是分类准确率、预测精度还是其他度量标准。

  3. 逐渐适应某一任务:这一点突出了机器学习算法的"学习"能力,即它们随着时间的推移会变得更加擅长于特定的任务。

在机器学习和AI的上下文中,算法可能包括决策树算法、神经网络算法、遗传算法等。每种算法都有其特定的学习方法和适用的任务类型。下面示例了决策树ID3算法的实现步骤:

在这里插入图片描述

为了更快更好地实现自己的算法,很多时候,人们喜欢把已经实现的、效果良好的算法做一些封装,这样,下次编写算法的时候就可以直接拿来用了。我们常用的TensorFlowPyTorchMindSpore都是。

现在大模型中很热的Transformer 可以被认为是一种算法,因为Transformer 描述了如何执行自注意力计算、如何结合输入数据、如何通过神经网络层传递数据等等,这个意义上的 “算法” 是描述模型在前向传播和反向传播期间所采取的计算步骤

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值