SVM 支持向量机
在机器学习中,SVM是有监督的学习模型。
什么是有监督的学习模型呢?它指的是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类。同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高。所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析。SVM作为有监督的学习模型,通常可以帮我们模式识别、分类以及回归分析。
项目实战
VM是有监督的学习模型,我们需要事先对数据打上分类标签,通过求解最大分类间隔来求解二分类问题。如果要求解多分类问题,可以将多个二分类器组合起来形成一个多分类器。
项目是生成一个乳腺癌诊断的SVM分类器,并计算这个分类器的准确率
数据集来自美国威斯康星州的乳腺癌诊断数据集,数据集下载地址:https://github.com/fuzhipeng/breast_cancer_data
总共分为两个阶段:
- 加载文档,数据清洗
- 生成分类器预测分类
1.加载文档
数据表一共包括了32个字段,代表的含义如下:

读取文件,清洗数据。
df = pd.read_csv('./data.csv')
features_mean= list(df.columns[2:12])
f

本文介绍了SVM作为有监督学习模型在乳腺癌诊断中的应用。通过加载和清洗数据,然后构建SVM分类器进行预测,最终计算分类器的准确率。项目使用的是美国威斯康星州的乳腺癌诊断数据集。
最低0.47元/天 解锁文章
3147

被折叠的 条评论
为什么被折叠?



