度度熊的王国战略

度度熊的王国战略

Time Limit: 40000/20000 MS (Java/Others)    Memory Limit: 32768/132768 K (Java/Others)
Total Submission(s): 309    Accepted Submission(s): 117


Problem Description
度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。

哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。

所以这一场战争,将会十分艰难。

为了更好的进攻哗啦啦族,度度熊决定首先应该从内部瓦解哗啦啦族。

第一步就是应该使得哗啦啦族内部不能同心齐力,需要内部有间隙。

哗啦啦族一共有n个将领,他们一共有m个强关系,摧毁每一个强关系都需要一定的代价。

现在度度熊命令你需要摧毁一些强关系,使得内部的将领,不能通过这些强关系,连成一个完整的连通块,以保证战争的顺利进行。

请问最少应该付出多少的代价。
 

Input
本题包含若干组测试数据。

第一行两个整数n,m,表示有n个将领,m个关系。

接下来m行,每行三个整数u,v,w。表示u将领和v将领之间存在一个强关系,摧毁这个强关系需要代价w

数据范围: 

2<=n<=3000

1<=m<=100000

1<=u,v<=n

1<=w<=1000
 

Output
对于每组测试数据,输出最小需要的代价。
 

Sample Input
  
  
2 1 1 2 1 3 3 1 2 5 1 2 4 2 3 3
 

Sample Output
  
  
1 3
并查集判断点是否合集,不合就将当前两点连线,统计权值,输出最小的权值,如果合集不为1,输出0
///并查集 测是否连接
///更新最小代价
///输出
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 3050
#define INF 0x3f3f3f
using namespace std;
int pre[N],h[N];
int sum[N];
int find(int x)
{
    int r=x;
    while(r!=pre[r])
        r=pre[r];
    return r;
}

void Union(int x,int y)
{
    int fx=find(x),fy=find(y);
    if(fx!=fy)
    {
        pre[fy]=fx;
    }
}
int main()
{
    int n,m;
    int a,b,w;
    while(~scanf("%d%d",&n,&m)&&n!=0)
    {
        int ans=0;
        for(int i=0; i<n; i++)
            pre[i]=i;
        memset(sum,0,sizeof(sum));
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&a,&b,&w);
            if(a==b)
                continue;
            sum[a]+=w;
            sum[b]+=w;
            int t1=find(a);
            int t2=find(b);
            if(t1!=t2)
            {
                pre[t1]=t2;
                ans++;
            }
        }
        if(ans==n-1)
        {
            sort(sum+1,sum+1+n);
            cout<<sum[1]<<endl;
        }
        else
            cout<<0<<endl;

    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值