数量关系部分主要包含数学运算和数字推理,其中数学运算涉及多种题型及考点,是备考重点。以下为主要内容总结:
一、核心方法
1.1 代入排除法
适用于选项信息充分、题目复杂等情况,如年龄、多位数、不定方程等问题。通过直接代入选项检验条件,先考虑和差关系进行排除,可提高解题速度。
1.2 数字特性法
- 奇偶特性:适用于不定方程、平均数、和差倍比、余数等问题。根据题目条件判断奇偶性,利用奇偶特性、和差同性等缩小未知数范围。
- 倍数特性:适用于不定方程、平均数、和差倍比、余数等问题。题目含百分数、倍数等关键词时,利用倍数关系结合选项数字特征进行排除。
1.3 方程法
- 常规方程(组):适用于存在明显等量关系的问题,如和差倍比、浓度、行程、工程等问题。根据等量关系设未知数,列方程(组)求解,可利用加减消元法、代入消元法,也可结合奇偶特性或倍数特性简化计算。
- 不定方程(组):适用于未知数个数多于方程个数的问题。根据未知数限制条件分为限定性和非限定性不定方程,前者常用数字特性缩小范围后结合代入法判断,后者常用多项式整体代换或赋零法求解。
1.4 赋值法
适用于题干无具体值或三量关系中至多给出一个量具体值的情况,如工程、行程、经济利润、浓度等问题。对不变量或根据题目条件赋值,简化计算。
1.5 线段法
适用于混合比例问题,如浓度、平均数、利润率、折扣、比重、增长率等混合问题。通过计算混合前后比例差的反比,得出各部分量的比例关系。
二、高频考点
2.1 工程问题
- 赋值总量型:题干给出多个完成工程时间,赋值总量为时间公倍数,计算效率后根据工作过程列方程求解。
- 赋值效率型:题干给出效率比例关系,按比例赋值效率,算出总量后根据其他条件计算。
- 给具体值型:题干给出效率、时间、总量中至少两个具体值,使用方程法结合公式计算。
2.2 行程问题
- 普通行程:
基础行程利用公式 s = v t s = vt s=vt计算;
等距离平均速度公式为 2 v 1 v 2 v 1 + v 2 \frac{2v_1v_2}{v_1 + v_2} v1+v22v1v2,适用于往返、上下坡等路程相同的情况。 - 相对行程
- 相遇、追及:
相遇问题公式为路程和 = ( 大速度 + 小速度 ) × 时间 =(大速度 + 小速度)×时间 =(大速度+小速度)×时间,
追及问题公式为路程差 = ( 大速度 − 小速度 ) × 时间 =(大速度 - 小速度)×时间 =(大速度−小速度)×时间;
多次相遇分两头分别出发和一头同时出发两种情况,
公式分别为 ( 2 n − 1 ) s = ( 大速度 + 小速度 ) × 时间 (2n - 1)s=(大速度 + 小速度)×时间 (2n−1)s=(大速度+小速度)×时间和 2 n × s = ( 大速度 + 小速度 ) × 时间 2n×s=(大速度 + 小速度)×时间 2n×s=(大速度+小速度)×时间。 - 顺水、逆水:
顺水行船公式为路程 = ( 船速 + 水速 ) × 时间 =(船速 + 水速)×时间 =(船速+水速)×时间,
逆水行船公式为路程 = ( 船速 − 水速 ) × 时间 =(船速 - 水速)×时间 =(船速−水速)×时间。
- 相遇、追及:
- 比例行程:当路程、速度、时间其中一个量为定值时,利用其他两个量的比例关系解题,可转化为份数或列方程求解。
2.3 经济利润问题
- 基础公式:
利润 = 售价 − 进价 =售价 - 进价 =售价−进价,
利润率 = 利润 进价 = ( 售价 − 进价 ) ÷ 进价 =\frac{利润}{进价}=(售价 - 进价)÷进价 =进价利润=(售价−进价)÷进价,
售价 = 进价 × ( 1 + 利润率 ) =进价×(1 + 利润率) =进价×(1+利润率),折扣 = 售价 ÷ 定价 =售价÷定价 =售价÷定价。
根据公式列方程计算,可通过赋值法简化计算。 - 分段计算:题干表述“超出部分按照某个标准计算”时,分段计算标准内和超标准部分,最后求和。
- 统筹经济:题干给出不同费用方案,问题求“最多”“最少”时,综合考虑对比各种情况,选择最优方案。
2.4 溶液问题
- 混合溶液:根据溶质质量 = 溶液质量 × 浓度 =溶液质量×浓度 =溶液质量×浓度,利用公式法、方程法或线段法计算混合前后溶质和溶液量的变化。
- 溶质不变:以溶质质量不变、溶液量变化为突破口,采用赋值法、公式法,根据浓度公式计算。
- 溶液不变:以溶质量变化、溶液量不变为突破口,采用赋值法、公式法,结合浓度公式计算。
2.5 排列组合与概率
- 基础概念*:分类用加法,分步用乘法;排列与顺序有关,公式为 A n m = n ! ( n − m ) ! A_{n}^{m}=\frac{n!}{(n - m)!} Anm=(n−m)!n!,组合与顺序无关,公式为 C n m = n ! ( n − m ) ! m ! C_{n}^{m}=\frac{n!}{(n - m)!m!} Cnm=(n−m)!m!n!。根据题目条件判断,利用公式计算。
- 常用方法
- 捆绑法:题目要求元素相邻时,先捆绑元素并考虑内部顺序,再与其他元素排列。
- 插空法:题目要求元素不相邻时,先排列其他元素,再将不相邻元素插入空位。
- 插板法:将 n n n个相同物品分给多个主体,每个主体至少分 m m m个,先转化为每个主体至少分 1 1 1个的情况,再用公式计算。
- 全错位排列:记住 D 1 = 0 D_1 = 0 D1=0, D 2 = 1 D_2 = 1 D2=1, D 3 = 2 D_3 = 2 D3=2, D 4 = 9 D_4 = 9 D4=9, D 5 = 44 D_5 = 44 D5=44等结论,直接套用。
- 概率相关
- 给出情况求概率:利用公式 P = 满足条件的个数 总个数 P=\frac{满足条件的个数}{总个数} P=总个数满足条件的个数计算。
- 给出概率求概率:分类用加法,分步用乘法,正面难时从反面考虑,用 1 − 不满足条件的概率 1 - 不满足条件的概率 1−不满足条件的概率计算。
2.6 容斥原理问题
- 公式法
- 两集合容斥原理:
公式为 A + B − A ∩ B = 总数 − A 、 B 均不满足个数 A + B - A\cap B =总数 - A、B均不满足个数 A+B−A∩B=总数−A、B均不满足个数,计算时可结合尾数法。 - 三集合容斥原理:
标准型公式为 A + B + C − A ∩ B − A ∩ C − B ∩ C + A ∩ B ∩ C = 总数 − A 、 B 、 C 均不满足个数 A + B + C - A\cap B - A\cap C - B\cap C + A\cap B\cap C =总数 - A、B、C均不满足个数 A+B+C−A∩B−A∩C−B∩C+A∩B∩C=总数−A、B、C均不满足个数;
非标准型公式为 A + B + C − b − 2 c = 总数 − A 、 B 、 C 均不满足个数 A + B + C - b - 2c =总数 - A、B、C均不满足个数 A+B+C−b−2c=总数−A、B、C均不满足个数,
A + B + C = a + 2 b + 3 c A + B + C = a + 2b + 3c A+B+C=a+2b+3c,根据题目条件选择合适公式代入计算。
- 两集合容斥原理:
- 图示法:结合文氏图,从最中间开始标数,每个封闭区域只标一个数,清晰呈现各集合关系,帮助解题。
- 方程法:当题干数据少,涉及人数或人次关系时,设未知数列方程求解,注意人数与人次的区别。
2.7 最值问题
- 最不利构造类:问法中出现“至少……保证……” ,先找出最不利情况(满足条件“比目标差一个”,不满足条件“无关项全给”),再加 1 1 1得到答案。
- 构造数列类:题目总量一定,问法为“最多/少……多/少……”“排名第 N N N的至多/少……”。先排序定位,再反向构造数列(使一个数最大/小,其他数相应最小/大),最后加和求解,注意结果非整数时的取整规则及主体数值是否可并列。
- 多集合反向构造:题干给出多个条件,问“这些条件都满足的至少有多少”。先反向求出各条件不满足的数量,求和后用总数减去该和。
- 复杂最值问题:非典型题型,与其他题型结合度高,如容斥原理与排列组合结合。考虑最极端情况,正向复杂时用逆向思维。
2.8 几何问题
- 平面几何:
n n n边形内角和为 ( n − 2 ) × 180 ° (n - 2)×180° (n−2)×180°,外角和为 360 ° 360° 360°;
常见周长和面积公式需牢记。
规则图形按公式计算,不规则图形通过割、补、平移转化为规则图形后计算。 - 立体几何:掌握常见表面积和体积公式,多数题目直接套用公式求解
三、专项考点
3.1 时间问题
- 年龄问题
- 解题思路:核心是年龄差始终不变,年龄一般只考周岁,年龄 = 现在年份 - 出生年份,每过 n n n年,每个人都长 n n n岁,两人年龄倍数随时间推移而变小,常结合常识(如父母年龄差、父母与孩子年龄差范围等),常用代入排除法和方程法(利用具体等量关系列方程)解题。
- 例题分析:如一家三口属相和生日相同,通过代入选项计算儿子年龄,结合父母年龄和与儿子年龄倍数关系及属相生日条件得出答案;李老师年龄问题通过代入选项计算出生年份,验证与题目条件是否相符求解。
- 周期问题
- 周期余数
- 题型特征:给出周期,求具体的某一类(天、个等)。
- 解题思路:确定周期,找准起点和终点,看清起点和总个数对应关系,计算余数(总个数÷每个周期个数 = 周期数……余数,从起点开始数余数个数)。
- 例题分析:如根据旗子排列顺序计算第 313 313 313个字母代表的旗子所属国家,需先确定周期,计算余数得出结果。
- 周期相遇
- 题型特征:有多个周期,起点在一起,终点也在一起。
- 解题思路:先求多个小周期的最小公倍数,定好起点和终点,计算余数。
- 例题分析:如多人去健身房健身,根据各自周期计算下次四人同日去健身房的时间,先求最小公倍数,再结合起点和余数确定具体星期。
- 星期计算与推断
- 题型特征:给出一段时间内有若干个周几,推算某一天为周几。
- 解题思路:利用连续 7 7 7天内、连续 28 28 28天内、连续 7 n 7n 7n天内周一至周日出现次数的结论推断起点是周几,再利用周期余数计算终点是周几。
- 例题分析:如根据 3 3 3月有特定个数的星期一和星期二推断国庆节是星期几,需先确定 3 3 3月最后一天是星期几作为起点,计算到 10 10 10月 1 1 1日的天数并求余数得出结果;根据 8 8 8月份工作日数量计算 8 8 8月 1 1 1日可能是周几,需结合连续 28 28 28天内休息日情况,通过代入选项验证得出答案。
- 周期余数
3.2 计算问题
- 基础计算
- 题型特征:题目给出明显算式,多涉及多个多位数加减乘除,计算复杂。
- 解题思路:复杂计算问题考查计算技巧,不能硬算,要找到算式突破口化简,常用尾数法排除、凑整法化简、根据基础运算方式化简、提取公因式、约分、分母有理化等方法。
- 例题分析:如计算四位数乘法式子,可通过逆用平方差公式化简计算;既有分数又有小数的乘除法计算,先统一化为分数形式,再提取公因子化简计算;对于求多次方个位数问题,先找出底数多次方的尾数规律,再用尾数法求解;方程问题可将已知解代入方程求解系数;根据数列关系列方程求解连续奇数问题;对于定义新运算,严格按照给定运算规则计算。
- 数列与平均数
- 等差数列
- 必背公式:
求和公式 S n = n a 1 + n ( n − 1 ) 2 d = a 1 + a n 2 n S_{n}=na_{1}+\frac{n(n - 1)}{2}d=\frac{a_{1}+a_{n}}{2}n Sn=na1+2n(n−1)d=2a1+ann(项数为奇数时,中间项即为等差数列平均数;项数为偶数时,中间 2 2 2项的平均数为等差数列平均数);
通项公式 a n = a 1 + ( n − 1 ) d = a m + ( n − m ) d a_{n}=a_{1}+(n - 1)d=a_{m}+(n - m)d an=a1+(n−1)d=am+(n−m)d。 - 解题思路:根据公式计算,重点理解数列和平均数性质,多揣摩量的关系和所用公式。
- 例题分析:如已知商店营业额增长情况,利用等差数列性质计算总营业额;根据电梯费缴纳规则计算某层住户应缴费用;根据选手排名情况计算小周排名;根据工人得分情况计算前 7 7 7名工人得分之和等。
- 必背公式:
- 等比数列
- 必背公式:
求和公式 S n = a 1 × 1 − q n 1 − q ( q ≠ 1 ) S_{n}=a_{1}\times\frac{1 - q^{n}}{1 - q}(q\neq1) Sn=a1×1−q1−qn(q=1);
通项公式 a n = a 1 × q n − 1 = a m × q n − m a_{n}=a_{1}\times q^{n - 1}=a_{m}\times q^{n - m} an=a1×qn−1=am×qn−m。 - 解题思路:根据公式计算,通过条件求出首项等关键量。
- 例题分析:如根据等比数列某项与前 n − 1 n - 1 n−1项和的差求数列前 4 4 4项之和,先求首项再代入求和公式计算。
- 必背公式:
- 平均数问题:平均数 = 总数÷个数,出现部分平均数和整体平均数时可考虑线段法。
- 等差数列
3.3 计数杂题
- 植树问题
- 单边线形植树公式(两端都植):
棵数 = 总长÷间隔 + 1;
总长 = (棵数 - 1)×间隔。 - 单边楼间植树公式(两端都不植):
棵数 = 总长÷间隔 - 1;
总长 = (棵数 + 1)×间隔。 - 环形植树公式:
棵数 = 总长÷间隔;
总长 = 棵数×间隔。 - 例题分析:如计算李大爷步行到某棵树开始往回走的位置,需根据树间距离和行走时间计算间隔数,列方程求解;计算道路两侧种树的费用,需先根据道路长度和间隔计算种树数量,再计算费用。
- 单边线形植树公式(两端都植):
- 方阵问题
- 总人数公式
- 正方形实心方阵的总人数为 N 2 N^2 N2。
- 长方形实心方阵的总人数为 M N MN MN。
- 最外层人数公式
- 正方形方阵最外层人数为 4 N − 4 4N - 4 4N−4。
- 长方形方阵最外层人数为 2 ( M + N ) − 4 2(M + N) - 4 2(M+N)−4。
- 相邻两层人数关系:方阵相邻两层人数相差 8 8 8人。
- 例题分析:如计算正方形地砖拼成大正方形时的地砖数量,可通过设未知数列方程求解,也可根据平方数特征结合选项判断;计算方阵中黄花数量,需先根据最外层红花数量和方阵相邻两层人数关系求出方阵每层花盆数,再找出黄花层计算数量。
- 总人数公式
- 爬楼梯问题:
从地面爬到第 N N N层楼,需要爬 ( N − 1 ) (N - 1) (N−1)层;
从第 M M M层爬到第 N N N层楼,需要爬 ( N − M ) (N - M) (N−M)层。 - 牛吃草问题
- 公式:
草地原有草量 = (牛吃草效率 - 每天长草效率)×天数。 - 解题思路:牛吃草问题是工程问题的一种特殊类型,题干有消耗和增长,涉及牛数量、吃草天数等情况,可根据公式求解。
- 例题分析:如轮船漏水问题,根据抽水和进水情况,利用公式计算轮船开始抽水时已进水量。
- 公式:
- 空瓶换酒问题
- 公式:
N N N个空瓶换1瓶酒, N N N空瓶 = 1瓶酒 = 1空瓶 + 1酒,
故 ( N − 1 ) (N - 1) (N−1)个空瓶就能换到1酒(只有酒,无瓶),
X X X个空瓶最多可以换到 X N − 1 \frac{X}{N - 1} N−1X瓶酒(当 X N − 1 \frac{X}{N - 1} N−1X不是整数时,可换到酒的数为 X N − 1 \frac{X}{N - 1} N−1X的整数部分)。 - 例题分析:如计算一定数量啤酒空瓶可免费喝到的啤酒瓶数,直接代入公式计算。
- 公式:
- 比赛问题
- 淘汰赛
N支队伍逬行淘汰赛:队伍两两进行比赛,输一场即淘汰出局。每一轮淘汰掉一半选手,直至产生最后的冠军。- 决出冠军、亚军:需比赛 ( N − 1 ) (N - 1) (N−1)场。
- 决出1、2、3、4名:需比赛 N N N场。
- 每场淘汰队伍数:
每场比赛淘汰1支队伍,每轮比赛淘汰一半的队伍(若总数是奇数,例如 11 11 11支队伍,则淘汰 5 5 5支队伍,留下 6 6 6支队伍,即此轮比赛有 1 1 1支队伍轮空)。
- 循环赛
N支队伍进行循环赛:每支队伍都能和其他队伍比赛一次或两次。- 单循环赛:
每支队伍都能和其他队伍比赛一次,需比赛 C N 2 = N ( N − 1 ) 2 C_{N}^{2}=\frac{N(N - 1)}{2} CN2=2N(N−1)场。 - 双循环赛:
每支队伍都能和其他队伍比赛两次,需比赛 A N 2 = N ( N − 1 ) A_{N}^{2}=N(N - 1) AN2=N(N−1)场。
- 单循环赛:
- 例题分析:如计算羽毛球赛淘汰赛轮空次数,通过枚举比赛轮次和队伍数量变化得出结果;根据比赛得分规则判断比赛所有选手得分总和的可能情况;根据单循环赛比赛场次和各队胜负场次计算某队战绩。
- 淘汰赛