股市术语表格

<
术语 全拼 说明 例子
开盘价 Opening Price 每个交易日开市后,证券的首笔成交价,由集合竞价产生 如某股在集合竞价后 9:30 成交的第一笔价格为 5 元,此为开盘价
收盘价 Closing Price 交易日闭市前最后一笔成交价 当日 15:00 前最后一笔交易价格是 6 元,即为收盘价
最高价 High Price 特定时间内证券成交的最高价格 当天股价波动在 4 - 7 元间,7 元即最高价
最低价 Low Price 特定时间内证券成交的最低价格 当天股价波动在 4 - 7 元间,4 元即最低价
成交量 Volume 一定时间内证券交易的成交数量(股数) 当日成交 80 万股,这就是成交量
成交额 Turnover 一定时间内证券交易的成交金额,成交量×成交均价 若成交 80 万股,均价 5 元,成交额为 400 万元
买盘 Bid 高于市价委托买入且主动成交的买单 买一报价 6.1 元有 500 手买单,是买盘
卖盘 Ask 低于市价委托卖出且主动成交的卖单 卖一报价 6.05 元有 300 手卖单,是卖盘
委比 Committee Ratio 衡量买卖盘相对强度,(委买手数 - 委卖手数)÷(委买手数 + 委卖手数)×100% 委买 800 手,委卖 600 手,委比约 14.29%
换手率 Turnover Rate 特定时间内股票转手买卖频率,成交量÷发行总股数×100% 流通股 500 万股,当日成交 50 万股,换手率 10%
普通股 Common Stock 公司基本股份类型,有多种股东权利 股东可参与公司决策投票等
优先股 Preferred Stock 在利润分配、剩余财产分配优先于普通股 公司分红时,优先股先按固定股息率分配
蓝筹股 Blue - Chip Stocks 行业重要、业绩优、交易活跃、红利多的大公司股
<think>好的,我现在需要帮用户在GitHub上找到关于本地部署多维表格的项目或教程。首先,用户的需求很明确,但可能需要细化一下。多维表格通常用于数据分析、业务智能等领域,可能涉及数据库、前端展示、后端处理等技术。本地部署意味着用户可能希望在自己的服务器或私有环境中运行,而不是使用云服务。 首先,我应该考虑用户可能使用的关键词。用户提到的“多维表格”可能对应“multi-dimensional table”或“OLAP”(在线分析处理)。本地部署对应的英文是“on-premises deployment”或者“self-hosted”。GitHub上的项目通常使用英文命名,所以需要把这些关键词翻译成英文来搜索。 接下来,用户可能需要一些具体的项目推荐。比如,Apache Kylin是一个开源的分布式分析引擎,支持多维数据分析,并且可以本地部署[^3]。虽然Kylin主要用于大数据分析,但它的多维数据模型可能符合用户需求。此外,还有Metabase、Superset这样的数据可视化工具,它们支持连接多种数据源并创建多维报表,可能也有本地部署的选项。 然后,用户可能需要教程。GitHub的仓库通常会有README文件作为使用指南,但专门的教程可能需要搜索外部资源。不过用户明确要求GitHub上的内容,所以可能需要寻找带有详细文档或Wiki的项目。此外,用户可能对React或类似前端框架实现的多维表格感兴趣,比如引用[2]提到的React构建股票表格的例子,虽然不直接相关,但可以借鉴其前端实现。 接下来,搜索技巧方面,用户可能需要使用合适的关键词组合,比如“self-hosted multidimensional table”、“on-premises OLAP”或者“multi-dimensional database”。同时,可以筛选Stars较多的项目,这些通常更成熟可靠。另外,关注项目标签(topics)如“olap”、“analytics”、“business-intelligence”也能帮助找到相关项目。 可能的挑战是,“多维表格”这个术语可能对应不同的技术实现,比如有的项目可能使用“多维数据模型”、“OLAP cube”等术语,需要扩展关键词。此外,一些项目可能主要面向云部署,但提供本地部署的选项,需要注意项目文档中的部署说明。 最后,需要确保推荐的项目确实支持本地部署,并检查它们的文档是否有详细的安装和配置指南。同时,提醒用户关注项目的活跃度、社区支持和许可证类型,这些因素影响项目的可用性和可维护性。</think>要在GitHub上寻找本地部署的多维表格相关项目或教程,可以按照以下步骤操作: ### 一、关键词组合搜索 1. **基础关键词**: - `self-hosted multidimensional table` - `on-premises OLAP` - `multi-dimensional database` - `local deployment cube` 2. **技术栈限定**(可选): - `React multidimensional grid`(前端实现) - `Python OLAP library`(分析层工具) - `Java cube engine`(后端处理) ### 二、推荐项目方向 1. **开源OLAP引擎**: - **Apache Kylin**:支持预计算多维立方体,专为大数据设计,提供REST API和SQL接口[^3] ```bash # 官方仓库示例 git clone https://github.com/apache/kylin ``` - **Druid**:实时分析数据库,支持多维数据聚合 2. **自托管BI工具**: - **Metabase**:支持本地部署,可连接多种数据库生成多维报表 - **Superset**:Airbnb开源的可视化工具,支持OLAP操作 3. **多维数据存储**: - **CrateDB**:分布式SQL数据库,支持多维索引 - **ClickHouse**:列式数据库,擅长多维分析查询 ### 三、筛选技巧 1. **使用GitHub高级搜索**: ``` is:public topic:olap stars:>100 pushed:>2022-01-01 ``` 2. **关注标签**: - `business-intelligence` - `data-warehouse` - `analytics` ### 四、学习资源获取 1. **项目文档**:查看仓库的`/docs`目录或Wiki页面 2. **代码案例**:搜索带有`example`或`demo`的目录 3. **开发者教程**:在仓库讨论区(Discussion)查找部署指南 ### 五、部署验证要点 1. **依赖检查**:确认是否需要Hadoop/Spark等基础环境[^3] 2. **配置文件示例**:优先寻找带`docker-compose.yml`的项目 3. **社区支持**:查看项目的Issue解决速度和PR合并频率
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RisunJan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值