利用前三年的数据预测2018年NBA常规赛东西部前八的详细过程和解决思路(19年类似)

使用2018年前数据训练模型,成功预测2018年NBA常规赛16强,仅一队预测失误。采用boruta算法与lm()结合数据降噪,模型效果显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NBA预测16强的实训报告

思路:
第一步
对于特征选择的度量
根据真实的比赛选中的特征值

第二步 模型的选择
解释模型
验证模型是否有效
说明:截屏的最上面的数字(1-30)是真实比赛中的排名,第二层是根据模型得到的对应队伍的预测胜率,根据大小排好了序。

加入boruta算法
得到的结果
思路创新
加权后的结果
模型的测试结果
可以发现,只有一个队伍预测失误。
在这里插入图片描述
得到训练数据的有效特征值
建立模型
得到用于预测的数据
此时的结果不理想
根据top10队员的数据得到2018年的预测数据
此时的结果
进一步的尝试
修正模型
最终结果

以上就是,利用2018年以前的数据进行预测2018年常规赛的16强。
可以发现,boruta算法+lm()以及对数据的降噪处理,得到的模型对于该问题相当吻合。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值