医学图像分析面临的挑战和未来方向

目前面临的主要挑战有:

  • 缺少精确的标注数据。医学领域对标注的要求更高。
  • 样本不平衡。正负样本往往数量差异较大。
  • 预测结果置信度信息缺失。医学领域对模型可解释性的要求更高

最近在做医学图像分割的工作,对这几点有一些体会,标注数据的质量对分割结果有很大的影响,Garbage in, garbage out 用在此处也很合适。

未来方向:

  • 处理小数据问题。一些有用的技术包括使用迁移学习、数据增广、GAN样本生成。
  • 结合更多数据来源。医学领域往往不仅仅依靠图像来诊断,结合病历资料的多模态学习也值得关注。
  • 关注其他领域的工作。关注能对医学图像分析带来启发的其他计算机视觉、机器学习领域的新工作。

论文地址:https://arxiv.org/abs/1902.05655v1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值