【pytorch】简单裂缝分割实验

12 篇文章 5 订阅
11 篇文章 3 订阅

自定义数据处理部分:

import torch.utils.data as data
import os, glob
import random, csv
import PIL.Image as Image
from torchvision import transforms


class CrackDataset(data.Dataset):
    # 创建CrackDataset类的实例时,就是在调用init初始化
    def __init__(self, root, modelset, transform=None, target_transform=None):  # root表示图片路径
        imgs = []
        self.root = root
        self.modelset = modelset
        self.imgs = imgs
        self.transform = transform
        self.target_transform = target_transform
        self.load_csv()

    def load_csv(self):
        # save [image_path,mask_path] as csv file
        if not os.path.exists(os.path.join(self.root, self.modelset + '.csv')):
            images_path = glob.glob(os.path.join(self.root, self.modelset, 'image', '*.png'))
            mask_path = glob.glob(os.path.join(self.root, self.modelset, 'mask', '*.png'))
            with open(os.path.join(self.root, self.modelset + '.csv'), mode='w', newline='') as f:
                csv_writer = csv.writer(f)
                assert len(mask_path) == len(images_path)  # 保证标签与图像数量相等
                for i in range(len(images_path)):
                    if images_path[i].split('\\')[-1] == mask_path[i].split('\\')[-1]:  # 保证标签与图像命名相同
                        csv_writer.writerow([images_path[i], mask_path[i]])
            print("write into csv file:", self.modelset + '.csv')
        #  read csv files
        with open(os.path.join(self.root, self.modelset + '.csv'), mode='r', newline='') as f:
            csv_reader = csv.reader(f)
            for row in csv_reader:
                self.imgs.append([row[0], row[1]])
        random.shuffle(self.imgs)  # 打乱顺序
        print("read from csv file:", self.modelset + '.csv')
        return self.imgs

    def __len__(self):
        return len(self.imgs)

    def __getitem__(self, index):
        x_path, y_path = self.imgs[index]
        img_x = Image.open(x_path)
        img_y = Image.open(y_path)
        if self.transform is not None:
            img_x = self.transform(img_x)
        if self.target_transform is not None:
            img_y = self.target_transform(img_y)
        return img_x, img_y  # 返回的是图片


def main():
    x_transform = transforms.Compose([
        transforms.ToTensor(),
        # 标准化至[-1,1],规定均值和标准差
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        # torchvision.transforms.Normalize(mean, std, inplace=False)
    ])
    # mask只需要转换为tensor
    y_transform = transforms.ToTensor()
    db = CrackDataset(root='dataset', modelset='test', transform=x_transform, target_transform=y_transform)
    img, mask = next(iter(db))
    print(img.shape, mask.shape)


if __name__ == '__main__':
    main()

网络结构(CrackSegNet,略有改动):

import torch
from torch import nn, autograd


class CrackSegNet(nn.Module):
    def __init__(self, input_channel=3, out_channel=3):
        super(CrackSegNet, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channel, out_channels=64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(64),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(64),
        )
        self.pool1 = nn.MaxPool2d(kernel_size=2)
        self.skip1 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
        )
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.skip2 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(256),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(256),
        )
        self.pool3 = nn.MaxPool2d(kernel_size=2)
        self.skip3 = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=8, mode='bilinear', align_corners=True)
        )
        self.dila_conv = nn.Sequential(
            nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, dilation=2, padding=2),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(512),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, dilation=2, padding=2),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(512),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, dilation=4, padding=4),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(512),
            nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, dilation=4, padding=4),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(512),
        )
        self.pool4 = nn.MaxPool2d(kernel_size=32)
        self.up4 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=256, mode='bilinear', align_corners=True)
        )
        self.pool5 = nn.MaxPool2d(kernel_size=16)
        self.up5 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=128, mode='bilinear', align_corners=True)
        )
        self.pool6 = nn.MaxPool2d(kernel_size=8)
        self.up6 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=64, mode='bilinear', align_corners=True)
        )
        self.pool7 = nn.MaxPool2d(kernel_size=4)
        self.up7 = nn.Sequential(
            nn.Conv2d(in_channels=512, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor=32, mode='bilinear', align_corners=True)
        )
        self.conv8 = nn.Sequential(
            nn.Conv2d(in_channels=896, out_channels=64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(64),
            nn.Conv2d(in_channels=64, out_channels=2, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=2, out_channels=1, kernel_size=1),
            nn.Sigmoid()
        )

    def forward(self, x):
        c1 = self.conv1(x)  # [b,c,256,256]->[b,64,256,256]
        p1 = self.pool1(c1)  # [b,64,256,256]->[b,64,128,128]
        s1 = self.skip1(p1)  # [b,64,128,128]->[b,128,256,256]
        c2 = self.conv2(p1)  # [b,64,128,128]->[b,128,128,128]
        p2 = self.pool2(c2)  # [b,128,128,128]->[b,128,64,64]
        s2 = self.skip2(p2)  # [b,128,64,64]->[b,256,128,128]
        c3 = self.conv3(p2)
        p3 = self.pool3(c3)
        s3 = self.skip3(p3)
        dc = self.dila_conv(p3)
        p4 = self.pool4(dc)
        up4 = self.up4(p4)
        p5 = self.pool5(dc)
        up5 = self.up5(p5)
        p6 = self.pool6(dc)
        up6 = self.up6(p6)
        p7 = self.pool7(dc)
        up7 = self.up7(p7)
        merge = torch.cat([s1, s2, s3, up4, up5, up6, up7], dim=1)  # [1, 896, 256, 256]
        out = self.conv8(merge)  # [1, 1, 256, 256]
        # print('dila_conv:{}->{}'.format(p3.shape, dc.shape))
        return out


def main():
    model = CrackSegNet()
    # -----------------
    # total_params = sum(p.numel() for p in model.parameters())
    # print(f'{total_params:,} total parameters.')
    # total_trainable_params = sum(
    #     p.numel() for p in model.parameters() if p.requires_grad)
    # print(f'{total_trainable_params:,} training parameters.')
    # -----------------

    # params = list(model.parameters())
    # k = 0
    # for index, i in enumerate(params):
    #     l = 1
    #     print("{}层的结构:".format(index) + str(list(i.size())))
    #     for j in i.size():
    #         l *= j
    #     print("{}层参数和:".format(index) + str(l))
    #     k = k + l
    # print("总参数数量和:" + str(k))

    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # from torchsummary import summary
    # model = model.to(device)

    sample1 = autograd.Variable(torch.Tensor(1, 3, 256, 256))
    out = model(sample1)
    # summary(model(sample1))
    print(out.shape)
    # print(model)


if __name__ == '__main__':
    main()

网络结构(Unet,与网上流传的版本一样一样的):

from torch import nn, autograd
import torch
import torchvision


class DoubleConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1),  # in_ch、out_ch是通道数
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        return self.conv(x)


class Unet(nn.Module):
    def __init__(self, in_ch=3, out_ch=3):
        super(Unet, self).__init__()
        # enconder
        self.conv1 = DoubleConv(in_ch, 64)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = DoubleConv(64, 128)
        self.pool2 = nn.MaxPool2d(2)
        self.conv3 = DoubleConv(128, 256)
        self.pool3 = nn.MaxPool2d(2)
        self.conv4 = DoubleConv(256, 512)
        self.pool4 = nn.MaxPool2d(2)
        self.conv5 = DoubleConv(512, 1024)
        # decoder
        self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
        self.conv6 = DoubleConv(1024, 512)
        self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
        self.conv7 = DoubleConv(512, 256)
        self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
        self.conv8 = DoubleConv(256, 128)
        self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
        self.conv9 = DoubleConv(128, 64)

        self.conv10 = nn.Conv2d(64, out_ch, 1)

    def forward(self, x):
        c1 = self.conv1(x)
        p1 = self.pool1(c1)
        c2 = self.conv2(p1)
        p2 = self.pool2(c2)
        c3 = self.conv3(p2)
        p3 = self.pool3(c3)
        c4 = self.conv4(p3)
        p4 = self.pool4(c4)
        c5 = self.conv5(p4)
        up_6 = self.up6(c5)

        merge6 = torch.cat([up_6, c4], dim=1)  # 按维数1(列)拼接,列增加
        c6 = self.conv6(merge6)

        up_7 = self.up7(c6)

        merge7 = torch.cat([up_7, c3], dim=1)
        c7 = self.conv7(merge7)

        up_8 = self.up8(c7)

        merge8 = torch.cat([up_8, c2], dim=1)
        c8 = self.conv8(merge8)

        up_9 = self.up9(c8)

        merge9 = torch.cat([up_9, c1], dim=1)
        c9 = self.conv9(merge9)
        c10 = self.conv10(c9)
        out = nn.Sigmoid()(c10)  # 化成(0~1)区间

        return out


if __name__ == '__main__':
    sample1 = autograd.Variable(torch.Tensor(1, 3, 256, 256))
    print(sample1.shape)
    unet = Unet(3, 1)
    out = unet(sample1)
    # pred = torch.argmax(torch.softmax(out, dim=1), dim=1)
    # pred = torch.unsqueeze(pred, dim=1)
    print(out.dtype)
    out = torch.where(out > 0.5, torch.ones_like(out), torch.zeros_like(out))
    # out[out > 0.5] = 1
    # out[out <= 0.5] = 0
    print(out.shape)
    print(out)

训练部分

import torch
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import visdom
import time
from torch import nn
import torchvision
from CrackDataset import CrackDataset
from unet import Unet
from CrackSegNet import CrackSegNet
import numpy as np
from IouCalaulate import IouCalculate
from metrics import SegmentationMetric

BatchSize = 8
LearningRate = 1e-3
Epochs = 30
# 是否使用current cuda device or torch.device('cuda:0')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(1234)


def main():
    x_transform = transforms.Compose([
        transforms.ToTensor(),
        # 标准化至[-1,1],规定均值和标准差
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        # torchvision.transforms.Normalize(mean, std, inplace=False)
    ])
    # mask只需要转换为tensor
    y_transform = transforms.ToTensor()

    train_set = CrackDataset(root='dataset', modelset='train', transform=x_transform, target_transform=y_transform)
    val_set = CrackDataset(root='dataset', modelset='val', transform=x_transform, target_transform=y_transform)
    test_set = CrackDataset(root='dataset', modelset='test', transform=x_transform, target_transform=y_transform)
    train_length = len(train_set)
    # img, mask = next(iter(val_set))
    # print(img.shape, mask.shape)
    train_set = DataLoader(train_set, batch_size=BatchSize, shuffle=True, num_workers=4)
    val_set = DataLoader(val_set, batch_size=BatchSize, num_workers=2)
    test_set = DataLoader(test_set, batch_size=BatchSize, num_workers=2)
    # print(next(iter(train_set))[0].shape)
    model = CrackSegNet(3, 1).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=LearningRate)
    criteon = torch.nn.BCELoss()
    # 训练
    best_acc, best_epoch, best_step = 0, 0, 0
    global_step = 0
    viz = visdom.Visdom()
    viz.line([0], [-1], win='loss', opts=dict(title='loss'))
    viz.line([0], [-1], win='iou', opts=dict(title='iou'))
    viz.line([0], [-1], win='miou', opts=dict(title='miou'))
    viz.line([0], [-1], win='acc', opts=dict(title='acc'))
    ver = []
    for epoch in range(Epochs):
        start_epoch = time.time()
        for step, (x, y) in enumerate(train_set):
            x, y = x.to(device), y.to(device)
            model.train()  # 训练模式
            logits = model(x)
            loss = criteon(logits, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            viz.line([loss.item()], [global_step], win='loss', update='append')
            global_step += 1
            print(
                'Epoch:{}/{}   step:{} training:{}%'.format(epoch+1, Epochs, step,
                                                            round(step * BatchSize * 100 / train_length, 2)))
            if step % 10 == 0 and step != 0:
                start_eval = time.time()
                model.eval()
                for x, y in val_set:
                    x, y = x.to(device), y.to(device)
                    with torch.no_grad():
                        out = model(x)
                        pred = torch.where(out > 0.5, torch.zeros_like(out), torch.ones_like(out))
                        # pred = torch.where(out > 0.5, torch.ones_like(out),torch.zeros_like(out))
                        metric = SegmentationMetric(2)  # 2表示有2个分类,有几个分类就填几
                        pred, y = pred.cpu().numpy(), y.cpu().numpy()
                        pred, y = pred.astype(np.int64), y.astype(np.int64)
                        metric.addBatch(pred, y)
                        pa = metric.pixelAccuracy()
                        # cpa = metric.classPixelAccuracy()
                        # mpa = metric.meanPixelAccuracy()
                        IoU = metric.IntersectionOverUnion()
                        mIoU = metric.meanIntersectionOverUnion()
                        if pa > best_acc:
                            best_epoch = epoch
                            best_step = step
                            best_acc = pa
                            torch.save(model.state_dict(), 'best1.mdl')
                torch.save(model.state_dict(), 'best.mdl')
                viz.line([IoU[0]], [global_step], win='iou', update='append')
                viz.line([mIoU], [global_step], win='miou', update='append')
                viz.line([pa], [global_step], win='acc', update='append')
                end_eval = time.time()
                print("step {} eval run time:{}s,  IoU:{}".format(step, round(end_eval - start_eval, 2), IoU))
        end_epoch = time.time()
        epoch_time = (end_epoch - start_epoch) / 60
        print("epoch {} run time:{}min".format(epoch+1, round(epoch_time, 2)))
        print('Time remaining: {}min'.format(round((Epochs-epoch-1) * (epoch_time), 2)))
    print('best acc:', best_acc, 'best epoch:', best_epoch, 'best step:', best_step, )


if __name__ == '__main__':
    main()

测试部分

# import cv2
import torch
import numpy as np
from torchvision import transforms
from CrackDataset import CrackDataset
from unet import Unet
from CrackSegNet import CrackSegNet
from torch.utils.data import DataLoader
from metrics import SegmentationMetric

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x_transform = transforms.Compose([
    transforms.ToTensor(),
    # 标准化至[-1,1],规定均值和标准差
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    # torchvision.transforms.Normalize(mean, std, inplace=False)
])
# mask只需要转换为tensor
y_transforms = transforms.ToTensor()


def denormalize(x_hat):
    mean = [0.5, 0.5, 0.5]
    std = [0.5, 0.5, 0.5]

    mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
    std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
    x = x_hat * std + mean

    return x


def test():
    model = CrackSegNet(3, 1)
    model.load_state_dict(torch.load('best.mdl', map_location='cpu'))
    dataset = CrackDataset(root="dataset", modelset='val', transform=x_transform, target_transform=y_transforms)
    dataloaders = DataLoader(dataset, batch_size=1)
    model.eval()
    import matplotlib.pyplot as plt
    plt.ion()
    with torch.no_grad():
        for x, mask in dataloaders:
            out = model(x)
            pred = torch.where(out > 0.5, torch.ones_like(out), torch.zeros_like(out))
            pred, y = pred.cpu().numpy(), mask.cpu().numpy()
            pred, y = pred.astype(np.int64), y.astype(np.int64)
            metric = SegmentationMetric(2)  # 2个分类
            hist = metric.addBatch(pred, y)
            pa = metric.pixelAccuracy()
            cpa = metric.classPixelAccuracy()
            mpa = metric.meanPixelAccuracy()
            IoU = metric.IntersectionOverUnion()
            mIoU = metric.meanIntersectionOverUnion()
            print('--' * 20)
            print(
                'hist:{},\niou:{},\nmiou:{},\nPA:{},\ncPA:{},\nmPA:{}'.format(hist, IoU, mIoU, pa, cpa,
                                                                              mpa))
            plt.figure()
            plt.subplot(2, 2, 1)
            plt.imshow(torch.squeeze(denormalize(x)).permute(1, 2, 0).numpy())
            plt.subplot(2, 2, 2)
            mask = torch.squeeze(mask).numpy()
            plt.imshow(mask, 'gray')
            img_y = torch.squeeze(out).numpy()
            plt.subplot(2, 2, 3)
            plt.imshow(img_y, 'gray')
            # plt.subplot(2, 2, 4)
            plt.text(320,200,'hist:{},\niou:{},\nmiou:{},\nPA:{},\ncPA:{},\nmPA:{}'.format(hist, IoU, mIoU, pa, cpa,
                                                                                   mpa))
            plt.pause(0.1)
        plt.show()


if __name__ == '__main__':
    test()

评价指标计算:【pytorch】图像分割中IOU等评价指标的计算

训练过程:
在这里插入图片描述
目前遇到的问题,训练过程中评价指标有一段时间是不变的,而且,指标也太低了,肯定有问题。应该是代码部分的问题,但是实在是找不到。。。希望看到的大佬帮忙指出。

测试效果(随便放几张,还是不错的):

左上:原图,
右上:标签,
左下:预测图,
右下:混淆矩阵和评价指标

数据集1(来自互联网):

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集2(自己做的)

这里裂缝标记为白色,所以iou[1]才是裂缝
可以看到,预测图中的裂缝较宽,所以计算出的IOU就比较低,至于为什么这么宽的原因可能是由于数据集的制作不标准,毕竟是自己边看剧边手工制作的,大概4万多张,本次参与训练的只有5000张左右。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 3
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 20
    评论
### 回答1: PyTorch YOLO是一种利用PyTorch深度学习框架实现的物体检测算法,能够有效地检测图像中的目标物体。而裂缝检测是检测地表或结构材料中的裂缝并进行分类的任务,例如混凝土结构中的裂缝、沥青路面中的裂缝等。 在使用PyTorch YOLO进行裂缝检测任务时,需要先准备训练数据集,包括裂缝图像和对应标注信息。然后使用PyTorch YOLO网络模型进行训练,通过迭代优化模型参数,让其能够准确地检测出裂缝,并进行分类和定位。 当模型训练完成后,可以使用该模型对新的未知图像进行裂缝检测。通过将图像输入模型,模型会输出检测结果,包括裂缝位置和分类信息等,从而实现对裂缝的有效检测。 PyTorch YOLO能够快速准确地进行裂缝检测,具有很高的效率和精度。同时,深度学习算法的不断优化也为裂缝检测提供了更多的可能性,有助于实现对裂缝的更加准确和全面的检测。 ### 回答2: PyTorch YOLO(You Only Look Once)模型是一种基于深度学习的目标检测算法,可以对图像或视频中的目标进行快速准确的定位和分类。而裂缝检测是指利用计算机视觉技术,检测道路、建筑物等基础设施中的裂缝缺陷并进行量化分析的过程。 在裂缝检测中,PyTorch YOLO模型的主要功能是识别裂缝缺陷的位置和类型。该模型使用卷积神经网络(CNN)对输入图像进行特征提取和检测,然后通过检测框(bounding boxes)对裂缝缺陷进行准确定位。 为了训练PyTorch YOLO模型进行裂缝检测,首先需要收集大量带有裂缝缺陷的图像数据,并进行标注。然后,使用训练数据训练模型,优化模型参数,提高模型的检测准确率和鲁棒性。 在实际应用中,PyTorch YOLO模型可以用于道路、桥梁、建筑物等基础设施的裂缝检测,有效提高了检测效率和精确度,降低了人工检测的工作量和成本,并有助于及时发现和修复基础设施中的缺陷,保障人民生命财产安全。 ### 回答3: Pytorch YOLO裂缝检测是一种基于深度学习的图像识别技术,目的是检测图像中可能存在的裂缝区域。该技术将深度学习算法与卷积神经网络技术结合,通过训练模型识别裂缝图像特征,从而准确地检测出裂缝位置。同时,选用Pytorch框架可以加快模型训练速度,并且对于模型的更改和优化也能够进行高效的操作。 在实际应用中,裂缝检测技术的发展对于维护基础设施、保障人民生命财产安全、提高公共安全等方面都具有重要意义。例如:在道路建设、桥梁监测、隧道维护、大坝安全预警等方面,裂缝检测技术都能够发挥重要作用。 总之,Pytorch YOLO裂缝检测技术的应用前景广阔,随着科技的不断发展,该技术将在现实生活中产生越来越多的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shine.Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值