基于tensorflow框架的GAN(感知机)网络(MNIST数据集)

导入包

import tensorflow as tf #导入tensorflow
from tensorflow.examples.tutorials.mnist import input_data #导入手写数字数据集
import numpy as np #导入numpy
import matplotlib.pyplot as plt #plt是绘图工具,在训练过程中用于输出可视化结果
import matplotlib.gridspec as gridspec #gridspec是图片排列工具,在训练过程中用于输出可视化结果
import os #导入os

保存模型的save函数

def save(saver, sess, logdir, step): 
   model_name = 'model' #模型名前缀
   checkpoint_path = os.path.join(logdir, model_name) #保存路径
   saver.save(sess, checkpoint_path, global_step=step) #保存模型
   print('The checkpoint has been created.')

初始化参数时使用的xavier_init函数

def xavier_init(size):
    in_dim = size[0] 
    xavier_stddev = 1. / tf.sqrt(in_dim / 2.) #初始化标准差
    return tf.random_normal(shape=size, stddev=xavier_stddev) #返回初始化的结果

X = tf.placeholder(tf.float32, shape=[None, 784]) #X表示真的样本(即真实的手写数字)

D_W1 = tf.Variable(xavier_init([784, 128])) #表示使用xavier方式初始化的判别器的D_W1参数,是一个784行128列的矩阵
D_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的判别器的D_1参数,是一个长度为128的向量

D_W2 = tf.Variable(xavier_init([128, 1])) #表示使用xavier方式初始化的判别器的D_W2参数,是一个128行1列的矩阵
D_b2 = tf.Variable(tf.zeros(shape=[1])) ##表示全零方式初始化的判别器的D_1参数,是一个长度为1的向量
 
theta_D = [D_W1, D_W2, D_b1, D_b2] #theta_D表示判别器的可训练参数集合


Z = tf.placeholder(tf.float32, shape=[None, 100]) #Z表示生成器的输入(在这里是噪声),是一个N列100行的矩阵

G_W1 = tf.Variable(xavier_init([100, 128])) #表示使用xavier方式初始化的生成器的G_W1参数,是一个100行128列的矩阵
G_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的生成器的G_b1参数,是一个长度为128的向量

G_W2 = tf.Variable(xavier_init([128, 784])) #表示使用xavier方式初始化的生成器的G_W2参数,是一个128行784列的矩阵
G_b2 = tf.Variable(tf.zeros(shape=[784])) #表示全零方式初始化的生成器的G_b2参数,是一个长度为784的向量
 
theta_G = [G_W1, G_W2, G_b1, G_b2] #theta_G表示生成器的可训练参数集合

生成维度为[m, n]的随机噪声作为生成器G的输入

def sample_Z(m, n): 
    return np.random.uniform(-1., 1., size=[m, n])

生成器,z的维度为[N, 100]

def generator(z): 
    G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) #输入的随机噪声乘以G_W1矩阵加上偏置G_b1,G_h1维度为[N, 128]
    G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 #G_h1乘以G_W2矩阵加上偏置G_b2,G_log_prob维度为[N, 784]
    G_prob = tf.nn.sigmoid(G_log_prob) #G_log_prob经过一个sigmoid函数,G_prob维度为[N, 784]
 
    return G_prob #返回G_prob

判别器,x的维度为[N, 784]

def discriminator(x):
    D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) #输入乘以D_W1矩阵加上偏置D_b1,D_h1维度为[N, 128]
    D_logit = tf.matmul(D_h1, D_W2) + D_b2 #D_h1乘以D_W2矩阵加上偏置D_b2,D_logit维度为[N, 1]
    D_prob = tf.nn.sigmoid(D_logit) #D_logit经过一个sigmoid函数,D_prob维度为[N, 1]
 
    return D_prob, D_logit #返回D_prob, D_logit

保存图片时使用的plot函数

def plot(samples): 
    fig = plt.figure(figsize=(4, 4)) #初始化一个4行4列包含16张子图像的图片
    gs = gridspec.GridSpec(4, 4) #调整子图的位置
    gs.update(wspace=0.05, hspace=0.05) #置子图间的间距
 
    for i, sample in enumerate(samples): #依次将16张子图填充进需要保存的图像
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
 
    return fig

取得生成器的生成结果

G_sample = generator(Z) 
D_real, D_logit_real = discriminator(X) #取得判别器判别的真实手写数字的结果
D_fake, D_logit_fake = discriminator(G_sample) #取得判别器判别的生成的手写数字的结果
 
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) #对判别器对真实样本的判别结果计算误差(将结果与1比较)
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) #对判别器对虚假样本(即生成器生成的手写数字)的判别结果计算误差(将结果与0比较)
D_loss = D_loss_real + D_loss_fake #判别器的误差
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) #生成器的误差(将判别器返回的对虚假样本的判别结果与1比较)
 
dreal_loss_sum = tf.summary.scalar("dreal_loss", D_loss_real) #记录判别器判别真实样本的误差
dfake_loss_sum = tf.summary.scalar("dfake_loss", D_loss_fake) #记录判别器判别虚假样本的误差
d_loss_sum = tf.summary.scalar("d_loss", D_loss) #记录判别器的误差
g_loss_sum = tf.summary.scalar("g_loss", G_loss) #记录生成器的误差
 
summary_writer = tf.summary.FileWriter('snapshots/', graph=tf.get_default_graph()) #日志记录器
 
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) #判别器的训练器
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) #生成器的训练器
 
mb_size = 1024 #训练的batch_size
Z_dim = 100 #生成器输入的随机噪声的列的维度
 
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) #mnist是手写数字数据集
 
sess = tf.Session() #会话层
sess.run(tf.global_variables_initializer()) #初始化所有可训练参数
 
if not os.path.exists('out/'): #初始化训练过程中的可视化结果的输出文件夹
    os.makedirs('out/')
 
if not os.path.exists('snapshots/'): #初始化训练过程中的模型保存文件夹
    os.makedirs('snapshots/')
 
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50) #模型的保存器
 
i = 0 #训练过程中保存的可视化结果的索引
 
for it in range(10000): #训练次数
    if it % 1000 == 0: #每训练N次就保存一下结果
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
 
        fig = plot(samples) #通过plot函数生成可视化结果
        plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') #保存可视化结果
        i += 1
        plt.close(fig)
 
    X_mb, _ = mnist.train.next_batch(mb_size) #得到训练一个batch所需的真实手写数字(作为判别器的输入)
 
    #下面是得到训练一次的结果,通过sess来run出来
    _, D_loss_curr, dreal_loss_sum_value, dfake_loss_sum_value, d_loss_sum_value = sess.run([D_solver, D_loss, dreal_loss_sum, dfake_loss_sum, d_loss_sum], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)})
    _, G_loss_curr, g_loss_sum_value = sess.run([G_solver, G_loss, g_loss_sum], feed_dict={Z: sample_Z(mb_size, Z_dim)})
 
    if it%1000==0: #每过N次记录一下日志,可以通过tensorboard查看
        summary_writer.add_summary(dreal_loss_sum_value, it)
        summary_writer.add_summary(dfake_loss_sum_value, it)
        summary_writer.add_summary(d_loss_sum_value, it)
        summary_writer.add_summary(g_loss_sum_value, it)

    if it % 1000 == 0: #每训练N次输出一下结果
        save(saver, sess, 'snapshots/', it)
        print('Iter: {}'.format(it))
        print('D loss: {:.4}'. format(D_loss_curr))
        print('G_loss: {:.4}'.format(G_loss_curr))
        print()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值