小试牛刀__GAN实战项目之mnist数据集(二)

刚读完上一篇的GAN原理,是不是觉得GAN特别的有意思,已经迫不及待了,那赶紧趁热打铁上手实战吧!
在这里插入图片描述
1.我的环境:

  • win10
  • Pycharm
  • Python3.5
  • tensorflow-gpu-1.4.0
  • matplotlib-3.0.3
  • numpy-1.16.2

2.数据集:
手写数字识别mnist数据集
下载完数据之后,所有数据为压缩包形式,我们需要对train数据进行解压:
在这里插入图片描述
3.代码:
网上代码真的是太多了,首先感谢这位大神在Github上总结的代码,直接就能成功运行了:

import tensorflow as tf #导入tensorflow
from tensorflow.examples.tutorials.mnist import input_data #导入手写数字数据集
import numpy as np #导入numpy
import matplotlib.pyplot as plt #plt是绘图工具,在训练过程中用于输出可视化结果
import matplotlib.gridspec as gridspec #gridspec是图片排列工具,在训练过程中用于输出可视化结果
import os #导入os
 
def save(saver, sess, logdir, step): #保存模型的save函数
   model_name = 'model' #模型名前缀
   checkpoint_path = os.path.join(logdir, model_name) #保存路径
   saver.save(sess, checkpoint_path, global_step=step) #保存模型
   print('The checkpoint has been created.')
 
def xavier_init(size): #初始化参数时使用的xavier_init函数
    in_dim = size[0] 
    xavier_stddev = 1. / tf.sqrt(in_dim / 2.) #初始化标准差
    return tf.random_normal(shape=size, stddev=xavier_stddev) #返回初始化的结果
 
X = tf.placeholder(tf.float32, shape=[None, 784]) #X表示真的样本(即真实的手写数字)
 
D_W1 = tf.Variable(xavier_init([784, 128])) #表示使用xavier方式初始化的判别器的D_W1参数,是一个784行128列的矩阵
D_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的判别器的D_1参数,是一个长度为128的向量
 
D_W2 = tf.Variable(xavier_init([128, 1])) #表示使用xavier方式初始化的判别器的D_W2参数,是一个128行1列的矩阵
D_b2 = tf.Variable(tf.zeros(shape=[1])) ##表示全零方式初始化的判别器的D_1参数,是一个长度为1的向量
 
theta_D = [D_W1, D_W2, D_b1, D_b2] #theta_D表示判别器的可训练参数集合
 
 
Z = tf.placeholder(tf.float32, shape=[None, 100]) #Z表示生成器的输入(在这里是噪声),是一个N列100行的矩阵
 
G_W1 = tf.Variable(xavier_init([100, 128])) #表示使用xavier方式初始化的生成器的G_W1参数,是一个100行128列的矩阵
G_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的生成器的G_b1参数,是一个长度为128的向量
 
G_W2 = tf.Variable(xavier_init([128, 784])) #表示使用xavier方式初始化的生成器的G_W2参数,是一个128行784列的矩阵
G_b2 = tf.Variable(tf.zeros(shape=[784])) #表示全零方式初始化的生成器的G_b2参数,是一个长度为784的向量
 
theta_G = [G_W1, G_W2, G_b1, G_b2] #theta_G表示生成器的可训练参数集合
 
 
def sample_Z(m, n): #生成维度为[m, n]的随机噪声作为生成器G的输入
    return np.random.uniform(-1., 1., size=[m, n])
 
 
def generator(z): #生成器,z的维度为[N, 100]
    G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) #输入的随机噪声乘以G_W1矩阵加上偏置G_b1,G_h1维度为[N, 128]
    G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 #G_h1乘以G_W2矩阵加上偏置G_b2,G_log_prob维度为[N, 784]
    G_prob = tf.nn.sigmoid(G_log_prob) #G_log_prob经过一个sigmoid函数,G_prob维度为[N, 784]
 
    return G_prob #返回G_prob
 
 
def discriminator(x): #判别器,x的维度为[N, 784]
    D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) #输入乘以D_W1矩阵加上偏置D_b1,D_h1维度为[N, 128]
    D_logit = tf.matmul(D_h1, D_W2) + D_b2 #D_h1乘以D_W2矩阵加上偏置D_b2,D_logit维度为[N, 1]
    D_prob = tf.nn.sigmoid(D_logit) #D_logit经过一个sigmoid函数,D_prob维度为[N, 1]
 
    return D_prob, D_logit #返回D_prob, D_logit
 
 
def plot(samples): #保存图片时使用的plot函数
    fig = plt.figure(figsize=(4, 4)) #初始化一个4行4列包含16张子图像的图片
    gs = gridspec.GridSpec(4, 4) #调整子图的位置
    gs.update(wspace=0.05, hspace=0.05) #置子图间的间距
 
    for i, sample in enumerate(samples): #依次将16张子图填充进需要保存的图像
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
 
    return fig
 
 
G_sample = generator(Z) #取得生成器的生成结果
D_real, D_logit_real = discriminator(X) #取得判别器判别的真实手写数字的结果
D_fake, D_logit_fake = discriminator(G_sample) #取得判别器判别的生成的手写数字的结果
 
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) #对判别器对真实样本的判别结果计算误差(将结果与1比较)
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) #对判别器对虚假样本(即生成器生成的手写数字)的判别结果计算误差(将结果与0比较)
D_loss = D_loss_real + D_loss_fake #判别器的误差
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) #生成器的误差(将判别器返回的对虚假样本的判别结果与1比较)
 
dreal_loss_sum = tf.summary.scalar("dreal_loss", D_loss_real) #记录判别器判别真实样本的误差
dfake_loss_sum = tf.summary.scalar("dfake_loss", D_loss_fake) #记录判别器判别虚假样本的误差
d_loss_sum = tf.summary.scalar("d_loss", D_loss) #记录判别器的误差
g_loss_sum = tf.summary.scalar("g_loss", G_loss) #记录生成器的误差
 
summary_writer = tf.summary.FileWriter('snapshots/', graph=tf.get_default_graph()) #日志记录器
 
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) #判别器的训练器
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) #生成器的训练器
 
mb_size = 128 #训练的batch_size
Z_dim = 100 #生成器输入的随机噪声的列的维度
 
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) #mnist是手写数字数据集
 
sess = tf.Session() #会话层
sess.run(tf.global_variables_initializer()) #初始化所有可训练参数
 
if not os.path.exists('out/'): #初始化训练过程中的可视化结果的输出文件夹
    os.makedirs('out/')
 
if not os.path.exists('snapshots/'): #初始化训练过程中的模型保存文件夹
    os.makedirs('snapshots/')
 
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50) #模型的保存器
 
i = 0 #训练过程中保存的可视化结果的索引
 
for it in range(1000000): #训练100万次
    if it % 1000 == 0: #每训练1000次就保存一下结果
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
 
        fig = plot(samples) #通过plot函数生成可视化结果
        plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') #保存可视化结果
        i += 1
        plt.close(fig)
 
    X_mb, _ = mnist.train.next_batch(mb_size) #得到训练一个batch所需的真实手写数字(作为判别器的输入)
 
    #下面是得到训练一次的结果,通过sess来run出来
    _, D_loss_curr, dreal_loss_sum_value, dfake_loss_sum_value, d_loss_sum_value = sess.run([D_solver, D_loss, dreal_loss_sum, dfake_loss_sum, d_loss_sum], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)})
    _, G_loss_curr, g_loss_sum_value = sess.run([G_solver, G_loss, g_loss_sum], feed_dict={Z: sample_Z(mb_size, Z_dim)})
 
    if it%100 ==0: #每过100次记录一下日志,可以通过tensorboard查看
        summary_writer.add_summary(dreal_loss_sum_value, it)
        summary_writer.add_summary(dfake_loss_sum_value, it)
        summary_writer.add_summary(d_loss_sum_value, it)
        summary_writer.add_summary(g_loss_sum_value, it)
 
    if it % 1000 == 0: #每训练1000次输出一下结果
        save(saver, sess, 'snapshots/', it)
        print('Iter: {}'.format(it))
        print('D loss: {:.4}'. format(D_loss_curr))
        print('G_loss: {:.4}'.format(G_loss_curr))
        print()

在上面的代码中,各位读者朋友可以看到,生成器与判别器都是使用多层感知机实现的(没有使用卷积神经网络)。生成器的输入是随机噪声,生成的是手写数字,生成器与判别器均使用Adam优化器进行训练并训练100w次。

4.结果:
然后我们的结果在out文件夹里:
在这里插入图片描述
在这里插入图片描述

5.分析:
1.进行GAN训练时,是将二维MNSIT数据拉伸成了一维数据进行处理,且GAN模型中没有用到卷积,只是多层神经网络的叠加,实现相对容易。
2.GAN的生成器和判别器中使用不同的激活函数。
3.有时候训练到最后所有的数字都变成了1,为什么会这样呢?因为失衡造成生成器崩溃了。

系列传送门:
初窥门径__生成对抗网络(GAN)(一)
融会贯通__条件生成对抗网络(cGAN)(三)
炉火纯青__深度卷积生成对抗网络(DCGAN)(四)
登堂入室__生成对抗网络的信息论扩展(infoGAN)(五)
渐入佳境__距离生成对抗网络(WGAN)(六)
登峰造极__边界均衡生成对抗网络(BEGAN)(七)
一代宗师__循环一致性生成对抗网络(CycleGAN)(八)

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值