2024.04 ADMM、NMF

非负矩阵分解(Non-negative Matrix Factorization)

NMF是非负矩阵分解(Non-negative Matrix Factorization)的缩写,是一种常用的矩阵分解技术。NMF的主要思想是将一个非负矩阵分解为两个非负矩阵的乘积,即将原始矩阵表示为两个或多个非负矩阵的线性组合。

NMF在图像处理、文本挖掘、生物信息学等领域广泛应用,特别适用于处理非负数据的特征提取和降维。通过NMF,可以发现数据中的潜在模式和结构,从而实现数据的压缩、特征提取和数据可视化等任务。

分布式计算、统计学习与ADMM算法 - Tao Gao | 高涛 (joegaotao.github.io)icon-default.png?t=N7T8https://joegaotao.github.io/2014/02/11/admm-stat-compute/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值