非负矩阵分解(Non-negative Matrix Factorization)
NMF是非负矩阵分解(Non-negative Matrix Factorization)的缩写,是一种常用的矩阵分解技术。NMF的主要思想是将一个非负矩阵分解为两个非负矩阵的乘积,即将原始矩阵表示为两个或多个非负矩阵的线性组合。
NMF在图像处理、文本挖掘、生物信息学等领域广泛应用,特别适用于处理非负数据的特征提取和降维。通过NMF,可以发现数据中的潜在模式和结构,从而实现数据的压缩、特征提取和数据可视化等任务。