###### POJ 2533

Description
A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence ( a1, a2, …, aN) be any sequence ( ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input*

7
1 7 3 5 9 4 8

Sample Output

4


import java.util.Scanner;

public class Main{
private static int num = 0;

private static int[] array = new int[10000];

private static int[] dp = new int[10000];

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
num = scanner.nextInt();
for (int i = 1; i <= num; i++) {
array[i] = scanner.nextInt();
}
dp[1] = 1;
for (int i = 2; i <= num; i++) {
int temp = 0;
for (int j = 1; j < i; j++) {
if (array[i] > array[j]) {
if (temp < dp[j]) {
temp = dp[j];
}
}
}
dp[i] = temp + 1;
}
int maxlen = 0;
for (int i = 1; i <=num; i++) {
System.out.println(dp[i]);
}
for (int i = 1; i <= num; i++) {
maxlen = maxlen >= dp[i] ? maxlen : dp[i];
}
System.out.println(maxlen);
}
scanner.close();
}
}


#### POJ2533(Longest Ordered Subsequence 最长公共子序列 DP或单调队列+二分)

2014-11-16 20:20:15

#### poj 2533

2013-06-08 21:48:23

#### poj 2533

2016-07-26 15:03:13

#### poj--2533

2014-08-12 20:18:59

#### POJ 2533

2015-07-20 11:58:20

#### poj2533Longest Ordered Subsequence

2014-08-16 18:03:17

#### POJ2533

2016-10-16 09:59:17

#### poj2533解题报告

2007-08-10 21:29:00

#### poj2533

2016-01-18 21:51:11

#### poj2533 简单DP LIS

2012-02-29 21:32:04

POJ 2533