TensorFlow基本概念

核心概念

  • TensorFlow中的计算可以表示为一个有向图,或称计算图
  • 每一个运算操作将作为一个节点,节点与节点之间的连接称为边
  • 在计算图的边中流动(flow)的数据称为张量(tensor),故得名TensorFlow

基本操作

4个重要的类型

  • Variable 计算图谱中的变量
  • Tensor 一个多维矩阵,带有很多方法
  • Graph 一个计算图谱
  • Session 用来运行一个计算图谱

三个重要的函数


# Variable 变量
tf.Variable.__init__(
    initial_value=None, @Tensor
    trainable=True,
    collections=None,
    validate_shape=True,
    caching_device=None,
    name=None,
    variable_def=None,
    dtype=None)
# 注意:Variable是一个Class,Tensor也是一个Class

# Constant 常数
tf.constant(value, dtype=None, shape=None, name='Const')
return: a constant @Tensor

# Placeholder 暂时变量,将来会对它赋值
tf.placeholder(dtype, shape=None, name=None)
return: 一个还尚未存在的 @Tensor

A+B

代码


#!/usr/bin/python3.5

import tensorflow as tf

node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1)
print(node2)

sess = tf.Session()
print(sess.run([node1, node2]))

node3 = tf.add(node1, node2)
print("node3: ", node3)
print("sess.run(node3): ",sess.run(node3))

运行结果

Tensor("Const:0", shape=(), dtype=float32)
Tensor("Const_1:0", shape=(), dtype=float32)
[3.0, 4.0]
node3:  Tensor("Add:0", shape=(), dtype=float32)
sess.run(node3):  7.0

Placeholder

代码


#!/usr/bin/python3.5

import tensorflow as tf

a = tf.placeholder(tf.int16)
b = tf.placeholder(tf.int16)

# Define some operations
add = tf.add(a, b)
mul = tf.multiply(a, b)

with tf.Session() as sess:
    print(sess.run(add, feed_dict={a: 2, b: 3}))  # ==> 5
    print(sess.run(mul, feed_dict={a: 2, b: 3}))  # ==> 6

运行结果

5
6

Graph

代码


#!/usr/bin/python3.5

import tensorflow as tf

a = tf.constant(5, name="input_a")
b = tf.constant(3, name="input_b")
c = tf.multiply(a, b, name="mul_c")
d = tf.add(a, b, name="add_d")
e = tf.add(c, d, name="add_e")

with tf.Session() as sess:
    print(sess.run(e)) # output => 23
    writer = tf.summary.FileWriter("./hello_graph", sess.graph)

运行结果

23

启动tensorboard来查看这个Graph

tensorboard --logdir="hello_graph"

打开网页http://ubuntu:6006 并切换到GRAPHS标签

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值