tensorflow cifar10数据集的测试(一)

说明

  • 在之前的mnist数据集中,由于数据特征太少,十分简单,仅用简单的cnn就能实现99.2%的准确率,这里尝试测试更加复杂的cifar10数据集

准备

  • 需要cifar10的数据集,可以在代码里实现下载,并指定文件夹
  • 需要下载预处理cifar数据集的一些类,用以下代码即可得到

    git clone https://github.com/tensorflow/models.git
    cd models/tutorials/image/cifar10

为使用其数据集预处理的类,需要进入该文件夹下,并新建python文件,代码具体如下

代码

import cifar10, cifar10_input
import tensorflow as tf
import numpy as np
import time

max_steps = 3000 # 最大迭代轮数
batch_size = 128 # 批大小
#下载好的数据集所在的文件夹
data_dir = '/home/jinhanjun/caffe/data/cifar-10-batches-bin' # 数据所在路径

# 初始化weight函数,通过wl参数控制L2正则化大小
def variable_with_weight_loss(shape, stddev, wl):
    var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
    if wl is not None:
        # L2正则化可用tf.contrib.layers.l2_regularizer(lambda)(w)实现,自带正则化参数
        weight_loss = tf.multiply(tf.nn.l2_loss(var), wl, name='weight_loss')
        tf.add_to_collection('losses', weight_loss)
    return var
# 如果没有下载,则需要将下面一句话取消注释并运行
#cifar10.maybe_download_and_extract()
# 此处的cifar10_input.distorted_inputs()和cifar10_input.inputs()函数
# 都是TensorFlow的操作operation,需要在会话中run来实际运行
# distorted_inputs()函数对数据进行了数据增强
images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                            batch_size=batch_size)
# 裁剪图片正中间的24*24大小的区块并进行数据标准化操作
images_test, labels_test = cifar10_input.inputs(eval_data=True,
                                                data_dir=data_dir,
                                                batch_size=batch_size)

# 定义placeholder
# 注意此处输入尺寸的第一个值应该是batch_size而不是None
image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
label_holder = tf.placeholder(tf.int32, [batch_size])

# 卷积层1,不对权重进行正则化
weight1 = variable_with_weight_loss([5, 5, 3, 64], stddev=5e-2, wl=0.0) # 0.05
kernel1 = tf.nn.conv2d(image_holder, weight1,
                       strides=[1, 1, 1, 1], padding='SAME')
bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1],
                       strides=[1, 2, 2, 1], padding='SAME')
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)

# 卷积层2
weight2 = variable_with_weight_loss([5, 5, 64, 64], stddev=5e-2, wl=0.0)
kernel2 = tf.nn.conv2d(norm1, weight2, strides=[1, 1, 1, 1], padding='SAME')
bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                       strides=[1, 2, 2, 1], padding='SAME')

# 全连接层3
reshape = tf.reshape(pool2, [batch_size, -1]) # 将每个样本reshape为一维向量
dim = reshape.get_shape()[1].value # 取每个样本的长度
weight3 = variable_with_weight_loss([dim, 384], stddev=0.04, wl=0.004)
bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)

# 全连接层4
weight4 = variable_with_weight_loss([384, 192], stddev=0.04, wl=0.004)
bias4 = tf.Variable(tf.constant(0.1, shape=[192]))
local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)

# 全连接层5
weight5 = variable_with_weight_loss([192, 10], stddev=1 / 192.0, wl=0.0)
bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
logits = tf.matmul(local4, weight5) + bias5

# 定义损失函数loss
def loss(logits, labels):
    labels = tf.cast(labels, tf.int64)
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')

loss = loss(logits, label_holder) # 定义loss
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss) # 定义优化器
top_k_op = tf.nn.in_top_k(logits, label_holder, 1)

# 定义会话并开始迭代训练
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# 启动图片数据增强的线程队列
tf.train.start_queue_runners()

# 迭代训练
for step in range(max_steps):
    start_time = time.time()
    image_batch, label_batch = sess.run([images_train, labels_train]) # 获取训练数据
    _, loss_value = sess.run([train_op, loss],
                             feed_dict={image_holder: image_batch,
                                        label_holder: label_batch})
    duration = time.time() - start_time # 计算每次迭代需要的时间
    if step % 10 == 0:
        examples_per_sec = batch_size / duration # 每秒处理的样本数
        sec_per_batch = float(duration) # 每批需要的时间
        format_str = ('step %d, loss=%.2f (%.1f examples/sec; %.3f sec/batch)')
        print(format_str % (step, loss_value, examples_per_sec, sec_per_batch))

# 在测试集上测评准确率
num_examples = 10000
import math
num_iter = int(math.ceil(num_examples / batch_size))
true_count = 0
total_sample_count = num_iter * batch_size
step = 0
while step < num_iter:
    image_batch, label_batch = sess.run([images_test, labels_test])
    predictions = sess.run([top_k_op],
                           feed_dict={image_holder: image_batch,
                                      label_holder: label_batch})
    true_count += np.sum(predictions)
    step += 1

precision = true_count / total_sample_count
print('precision @ 1 =%.3f' % precision)

'''
precision @ 1 =0.720
'''


### 回答1: TensorFlow 是一种常用的机器学习和深度学习框架,可以用于训练和部署各种人工智能模型。CIFAR-10 是一个常用的图像分类数据集,其中包含 10 种不同类型的图像。 要在 TensorFlow 中使用 CIFAR-10 数据集进行图像分类,可以遵循以下步骤: 1. 下载 CIFAR-10 数据集,并将其解压缩到本地目录中。 2. 使用 TensorFlow 数据集 API 加载 CIFAR-10 数据集。可以使用 `tf.keras.datasets.cifar10.load_data()` 方法加载 CIFAR-10 数据集,并将其分为训练集和测试集。 3. 预处理数据。可以对数据进行归一化、缩放或增强等操作,以提高模型的准确性和鲁棒性。 4. 构建模型。可以使用 TensorFlow 的高级 API(如 Keras)或低级 API(如 tf.layers)构建模型。常用的模型包括卷积神经网络(CNN)、残差网络(ResNet)等。 5. 训练模型。可以使用 TensorFlow 的高级 API(如 Keras)或低级 API(如 tf.Session)来训练模型。可以选择不同的优化器、损失函数和评估指标,以最小化损失并提高模型的准确性。 6. 评估模型。在训练模型后,可以使用测试集来评估模型的性能。可以计算各种指标,如准确性、精度、召回率等。 7. 使用模型进行预测。一旦训练好了模型,就可以将其用于新的图像分类任务中。 希望这些步骤能帮助你在 TensorFlow 中使用 CIFAR-10 进行图像分类。 ### 回答2: TensorFlow是一种用于大规模数据处理和机器学习的开放源代码软件库,CIFAR-10是一组包含10个分类的图像数据集,每个分类都包含6000个32x32大小的颜色图像。TensorFlow CIFAR-10是一个使用TensorFlow框架来对CIFAR-10数据集进行处理和训练的程序。 TensorFlow CIFAR-10的主要目的是通过构建一个深度卷积神经网络(Deep CNN)模型来训练CIFAR-10数据集,并能够对新的未知图像进行预测。该模型由多个卷积层、池化层和全连接层组成。在训练期间,程序将使用CIFAR-10数据集对模型进行训练和优化,以最小化损失函数(loss function),并通过反向传播来更新权重和偏差参数。在测试期间,程序将随机抽取一些样本来验证模型的准确度,并计算模型的预测准确度。 TensorFlow CIFAR-10的应用范围非常广泛,可以用于图像识别、检测和分类任务。在图像分类任务中,该程序可以对图像进行自动分类,以便将图像分为不同的类别。在图像检测任务中,该程序可以检测图像中的对象,并标记它们的位置。在图像识别任务中,该程序可以识别图像中的物体,并将其与其他物体区分开来。 TensorFlow是一个强大的机器学习框架,能够利用图像、音频、文本等多种形式的数据进行训练和推断。CIFAR-10是一个常用的计算机视觉数据集,可以在许多图像处理和机器学习任务中使用。将TensorFlow和CIFAR-10结合使用,可以帮助用户快速构建和训练深度卷积神经网络模型,以实现图像分类、检测和识别等目标。 ### 回答3: TensorFlow CIFAR10是一个常用的机器学习数据集,用于训练和测试各种图像分类算法。它包含10个不同的类别,其中每个类别包含5000个32x32像素的彩色图像。由于数量较小,数据集相对简单,可以很好地用于介绍和实践分类算法的学习。以下是关于TensorFlow CIFAR10的更详细信息: TensorFlow CIFAR10数据集由两部分组成:训练集和测试集。训练集包含50000张图像,测试集包含10000张图像。这些图像被分为10个不同的类别,包括: 1. 飞机 2. 汽车 3. 鸟 4. 猫 5. 鹿 6. 狗 7. 青蛙 8. 马 9. 船 10. 卡车 在这个数据集中,每个图像被标记为一个类别,算法的目标就是根据输入的图像,预测该图像应该被分为哪个类别。 TensorFlow CIFAR10数据集是一个非常适合新手练习的数据集。相对于其他一些数据集,它的规模相对较小,每个图像的分辨率也不是很高,训练算法的速度较快。因此,即使是没有太多机器学习经验的人也可以快速地使用CIFAR10数据集了解分类算法的工作原理,并实际练习构建分类器和测试算法的性能表现。同时,由于CIFAR10数据集的标记比较准确,因此实际训练模型的效果也相对较好,可以作为机器学习初学者进一步学习的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值