组合数学各种小定理

//转自:http://www.oschina.net/code/snippet_203297_11313

组合数

组合数求模
组合数求模
问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。

方案1: 暴力求解,C(n,m)=n*(n-1)(n-m+1)/m!,n<=15
方案2: 打表,C(n,m)=C(n-1,m-1)+C(n-1,m),n<=1,000
方案3: 质因数分解,C(n,m)=n!/(m!*(n-m)!),C(n,m)=p1a1-b1-c1p2a2-b2-c2…pkak-bk-ck,n<=10,000,000
方案4: Lucas定理,将m,n化为p进制,有:C(n,m)=C(n0,m0)*C(n1,m1)…(mod p),算一个不是很大的C(n,m)%p,p为素数,化为线性同余方程,用扩展的欧几里德定理求解,n在int范围内,修改一下可以满足long long范围内。

方案1

int Combination(int n, int m)
{
    const int M = 10007;
    int ans = 1;
    for(int i=n; i>=(n-m+1); --i)
        ans *= i;
    while(m)
        ans /= m--;
    return ans % M;
}

方案2

const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
    int i,j;
    for(i=0; i<=MAXN; ++i)
    {
        C[0][i] = 0;
        C[i][0] = 1;
    }
    for(i=1; i<=MAXN; ++i)
    {
        for(j=1; j<=MAXN; ++j)
        C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
    }
}

int Combination(int n, int m)
{
    return C[n][m];
}

方案3

//用筛法生成素数
const int MAXN = 1000000;
bool arr[MAXN+1] = {false};
vector<int> produce_prim_number()
{
    vector<int> prim;
    prim.push_back(2);
    int i,j;
    for(i=3; i*i<=MAXN; i+=2)
    {
        if(!arr[i])
        {
            prim.push_back(i);
            for(j=i*i; j<=MAXN; j+=i)
            arr[j] = true;
        }
    }
    while(i<=MAXN)
    {
        if(!arr[i])
        prim.push_back(i);
        i+=2;
    }
    return prim;
}

//计算n!中素因子p的指数
int Cal(int x, int p)
{
    int ans = 0;
    long long rec = p;
    while(x>=rec)
    {
        ans += x/rec;
        rec *= p;
    }
    return ans;
}

//计算n的k次方对M取模,二分法
int Pow(long long n, int k, int M)
{
    long long ans = 1;
    while(k)
    {
        if(k&1)
        {
            ans = (ans * n) % M;
        }
        n = (n * n) % M;
        k >>= 1;
    }
    return ans;
}

//计算C(n,m)
int Combination(int n, int m)
{
    const int M = 10007;
    vector<int> prim = produce_prim_number();
    long long ans = 1;
    int num;
    for(int i=0; i<prim.size() && prim[i]<=n; ++i)
    {
        num = Cal(n, prim[i]) - Cal(m, prim[i]) - Cal(n-m, prim[i]);
        ans = (ans * Pow(prim[i], num, M)) % M;
    }
    return ans;
}

方案4

#include <stdio.h>
const int M = 10007;
int ff[M+5];  //打表,记录n!,避免重复计算

//求最大公因数
int gcd(int a,int b)
{
    if(b==0)
        return a;
    else
        return gcd(b,a%b);
}

//解线性同余方程,扩展欧几里德定理
int x,y;
void Extended_gcd(int a,int b)
{
    if(b==0)
    {
       x=1;
       y=0;
    }
    else
    {
       Extended_gcd(b,a%b);
       long t=x;
       x=y;
       y=t-(a/b)*y;
    }
}

//计算不大的C(n,m)
int C(int a,int b)
{
    if(b>a)
    return 0;
    b=(ff[a-b]*ff[b])%M;
    a=ff[a];
    int c=gcd(a,b);
    a/=c;
    b/=c;
    Extended_gcd(b,M);
    x=(x+M)%M;
    x=(x*a)%M;
    return x;
}

//Lucas定理
int Combination(int n, int m)
{
    int ans=1;
    int a,b;
    while(m||n)
    {
             a=n%M;
        b=m%M;
        n/=M;
        m/=M;
        ans=(ans*C(a,b))%M;
    }
    return ans;
}

int main(void)
{
    int i,m,n;
    ff[0]=1;
    for(i=1;i<=M;i++)  //预计算n!
    ff[i]=(ff[i-1]*i)%M;

    scanf("%d%d",&n, &m);
    printf("%d\n",func(n,m));

    return 0;
}

容斥原理

容斥原理

容斥原理+莫比乌斯反演 练习题目


LL solve (LL n, LL r)
{
    vector<int> p;
    for (int  i=2; i*i<=n; ++i)
        if (n % i == 0)
        {
            p.push_back (i);
            while (n % i == 0)
                n /= i;
        }
    if (n > 1)  p.push_back (n);

    LL sum = 0;
    for (int msk=1; msk<(1<<p.size()); ++msk)
    {
        LL mult = 1,
            bits = 0;
        for (int i=0; i<(LL)p.size(); ++i)
            if (msk & (1<<i))
            {
                ++bits;
                mult *= p[i];
            }

        LL cur = r / mult;
        if (bits % 2 == 1)
            sum += cur;
        else
            sum -= cur;
    }

    return r - sum;
}

/*****************************************/
/**容斥原理过程**/
LL per;
void dfs(LL a,LL b,LL c)//a在数组中的起始位置,b含的个数,c公共质因子的个数
{
    if(b==c)
    {
        LL t=m;
        for(int i=0;i<c;i++) t/=s[i];
        per+=qmod(t,n,1);
        //per+=balabala; 这里就是求选取这么多个元素的情况数有多少种
    }
    else
    {
        for(int i=a;i<total;i++)
        {
            s[b]=num[i];
            dfs(i+1,b+1,c);
        }
    }
}

LL DeMorgan()
{
    LL ans = 0;//看具体情况
    for(int i=1;i<=total;i++)
    {
        per=0;
        dfs(0,0,i);
        if(i&1) ans-=per;
        else    ans+=per;
    }
    return ans;
}

莫比乌斯反演

讲义
贾教的线性筛<-很有帮助
非常实用的莫比乌斯反演小节

f,fFF(n)=d|nf(d),f.Ff? 莫比乌斯反演公式

莫比乌斯函数

μ(n)=1(1)r0,n=1,n=p1p2...pr,other

莫比乌斯函数是一个乘性函数

莫比乌斯函数的和函数 F(n)=d|nμ(d) 满足
F(n)=d|nμ(d)={10,n=1,n>1

莫比乌斯反演公式
对于 fF(F(n)=d|nf(d))
形式一: f(n)=d|nμ(d)F(n/d)
形式二: f(n)=n|dμ(d/n)F(d)

注意有这样的两种形式,


int mobius(int n){
    int m = 1;
    for(int i=2;i*i<=n;i++){
        if(n%i==0){
            m*=-1;
            int k = 0;
            n/=i;
            if(n%i==0) {m=0;break;}//某个素因子的幂大于1
        }
    }
    if(n>1) m *= -1;
    return m;
}

/*******************************************/
线性筛法预处理mobius函数
int prime[N],kp;
int Is_or[N],mu[N];

void Prime(){
    int x;
    mu[1]=1;
    memset(Is_or,true,sizeof(Is_or));
    for(int i=2;i<=n;i++){
        if(Is_or[i]) prime[kp++]=i,mu[i]=-1;
        for(int j=0;j<kp&&i*prime[j]<=n;j++){
            x = i*prime[j];
            Is_or[x]=false;
            if(0==i%prime[j]) break;
            mu[x] = -mu[i];
        }
    }
    return ;
}

一些特殊的数

卡特兰数

stirling数

默慈金数

Acdream的介绍贴

就是从(0,0)到(n,0)中 只能向左/左上/左下走的方案数
(x,y)其中y>0

两种公式

那罗延数

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值