基于Pytorch实现的声纹识别模型

前言

本章介绍如何使用Pytorch实现简单的声纹识别模型,本项目参考了人脸识别项目的做法Pytorch-MobileFaceNet ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。

源码地址:VoiceprintRecognition-Pytorch (0.3.9)

使用环境:

  • Python 3.7
  • Pytorch 1.8.1

使用环境:

  • Anaconda 3
  • Python 3.8
  • Pytorch 1.13.1
  • Windows 10 or Ubuntu 18.04

项目特性

  1. 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE
  2. 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)
  3. 支持损失函数:AAMLoss、AMLoss、ARMLoss、CELoss
  4. 支持预处理方法:MelSpectrogram、Spectrogram、MFCC

模型下载

模型预处理方法数据集类别数量tprfpreer模型下载地址
EcapaTdnnMelSpectrogramzhvoice32420.989720.007300.01758加载知识星球获取
EcapaTdnnSpectrogramzhvoice32420.991420.008170.01675
EcapaTdnnMFCCzhvoice32420.994310.006590.01227
EcapaTdnnMelSpectrogram更大的数据集63550.978810.007880.02907
EcapaTdnnMelSpectrogram超大的数据集137180.983420.007760.02434

安装环境

  • 首先安装的是Pytorch的GPU版本,如果已经安装过了,请跳过。
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
  • 安装ppvector库。

使用pip安装,命令如下:

python -m pip install mvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple

建议源码安装,源码安装能保证使用最新代码。

git clone https://github.com/yeyupiaoling/VoiceprintRecognition_Pytorch.git
cd VoiceprintRecognition_Pytorch/
python setup.py install

创建数据

本教程笔者使用的是zhvoice ,这个数据集一共有3242个人的语音数据,有1130000+条语音数据,下载之前要全部解压数据集。如果读者有其他更好的数据集,可以混合在一起使用,但最好是要用python的工具模块aukit处理音频,降噪和去除静音。

首先是创建一个数据列表,数据列表的格式为<语音文件路径\t语音分类标签>,创建这个列表主要是方便之后的读取,也是方便读取使用其他的语音数据集,语音分类标签是指说话人的唯一ID,不同的语音数据集,可以通过编写对应的生成数据列表的函数,把这些数据集都写在同一个数据列表中。

create_data.py写下以下代码,因为zhvoice 这个数据集是mp3格式的,作者发现这种格式读取速度很慢,所以笔者把全部的mp3格式的音频转换为wav格式,这个过程可能很久。当然也可以不转换,项目也是支持的MP3格式的,只要设置参数to_wav=False。执行下面程序完成数据准备。

python create_data.py

执行上面的程序之后,会生成以下的数据格式,如果要自定义数据,参考如下数据列表,前面是音频的相对路径,后面的是该音频对应的说话人的标签,就跟分类一样。自定义数据集的注意,测试数据列表的ID可以不用跟训练的ID一样,也就是说测试的数据的说话人可以不用出现在训练集,只要保证测试数据列表中同一个人相同的ID即可。

dataset/zhvoice/zhmagicdata/5_895/5_895_20170614203758.wav	3238
dataset/zhvoice/zhmagicdata/5_895/5_895_20170614214007.wav	3238
dataset/zhvoice/zhmagicdata/5_941/5_941_20170613151344.wav	3239
dataset/zhvoice/zhmagicdata/5_941/5_941_20170614221329.wav	3239
dataset/zhvoice/zhmagicdata/5_941/5_941_20170616153308.wav	3239
dataset/zhvoice/zhmagicdata/5_968/5_968_20170614162657.wav	3240
dataset/zhvoice/zhmagicdata/5_968/5_968_20170622194003.wav	3240
dataset/zhvoice/zhmagicdata/5_968/5_968_20170707200554.wav	3240
dataset/zhvoice/zhmagicdata/5_970/5_970_20170616000122.wav	3241

修改预处理方法

配置文件中默认使用的是MelSpectrogram预处理方法,如果要使用其他预处理方法,可以修改配置文件中的安装下面方式修改,具体的值可以根据自己情况修改。

  1. MelSpectrogram预处理方法如下:
preprocess_conf:
  # 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC
  feature_method: 'MelSpectrogram'

# MelSpectrogram的参数,其他的预处理方法查看对应API设设置参数
feature_conf:
  sample_rate: 16000
  n_fft: 1024
  hop_length: 320
  win_length: 1024
  f_min: 50.0
  f_max: 14000.0
  n_mels: 64
  1. pectrogram'预处理方法如下:
preprocess_conf:
  # 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC
  feature_method: 'Spectrogram'

# Spectrogram的参数,其他的预处理方法查看对应API设设置参数
feature_conf:
  n_fft: 1024
  hop_length: 320
  win_length: 1024
  1. MFCC预处理方法如下:
preprocess_conf:
  # 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC
  feature_method: 'MFCC'

# MFCC的参数,其他的预处理方法查看对应API设设置参数
feature_conf:
  sample_rate: 16000
  n_fft: 1024
  hop_length: 320
  win_length: 1024
  f_min: 50.0
  f_max: 14000.0
  n_mels: 64
  n_mfcc: 40

训练模型

使用train.py训练模型,本项目支持多个音频预处理方式,通过configs/ecapa_tdnn.yml配置文件的参数preprocess_conf.feature_method可以指定,MelSpectrogram为梅尔频谱,Spectrogram为语谱图,MFCC梅尔频谱倒谱系数。通过参数augment_conf_path可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0

# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py

训练输出日志:

[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - augment_conf_path: configs/augmentation.json
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - pretrained_model: None
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - resume_model: None
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - save_model_path: models/
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-02-25 11:53:53.194706 INFO   ] utils:print_arguments:16 - ------------------------------------------------
[2023-02-25 11:53:53.208669 INFO   ] utils:print_arguments:18 - ----------- 配置文件参数 -----------
[2023-02-25 11:53:53.208669 INFO   ] utils:print_arguments:21 - dataset_conf:
[2023-02-25 11:53:53.208669 INFO   ] utils:print_arguments:28 - 	batch_size: 64
[2023-02-25 11:53:53.208669 INFO   ] utils:print_arguments:28 - 	chunk_duration: 3
[2023-02-25 11:53:53.208669 INFO   ] utils:print_arguments:28 - 	do_vad: False
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	min_duration: 0.5
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	num_speakers: 3242
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	num_workers: 4
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	sample_rate: 16000
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	target_dB: -20
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	test_list: dataset/test_list.txt
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	train_list: dataset/train_list.txt
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	use_dB_normalization: True
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:21 - feature_conf:
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	hop_length: 160
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	n_fft: 400
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	n_mels: 80
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	sr: 16000
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	win_length: 400
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	window: hann
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:21 - model_conf:
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	channels: [512, 512, 512, 512, 1536]
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	dilations: [1, 2, 3, 4, 1]
[2023-02-25 11:53:53.209670 INFO   ] utils:print_arguments:28 - 	kernel_sizes: [5, 3, 3, 3, 1]
[2023-02-25 11:53:53.210667 INFO   ] utils:print_arguments:28 - 	lin_neurons: 192
[2023-02-25 11:53:53.210667 INFO   ] utils:print_arguments:21 - optimizer_conf:
[2023-02-25 11:53:53.210667 INFO   ] utils:print_arguments:28 - 	learning_rate: 0.001
[2023-02-25 11:53:53.210667 INFO   ] utils:print_arguments:28 - 	weight_decay: 1e-6
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:21 - preprocess_conf:
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:28 - 	feature_method: MelSpectrogram
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:21 - train_conf:
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:28 - 	log_interval: 100
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:28 - 	max_epoch: 30
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:30 - use_model: ecapa_tdnn
[2023-02-25 11:53:53.220680 INFO   ] utils:print_arguments:31 - ------------------------------------------------
[2022-11-05 19:58:31.589525 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'noise', 'aug_type': 'audio', 'params': {'min_snr_dB': 10, 'max_snr_dB': 50, 'repetition': 2, 'noise_dir': 'dataset/noise/'}, 'prob': 0.0}
[2022-11-05 19:58:31.589525 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'resample', 'aug_type': 'audio', 'params': {'new_sample_rate': [8000, 32000, 44100, 48000]}, 'prob': 0.0}
[2022-11-05 19:58:31.589525 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'speed', 'aug_type': 'audio', 'params': {'min_speed_rate': 0.9, 'max_speed_rate': 1.1, 'num_rates': 3}, 'prob': 0.0}
[2022-11-05 19:58:31.589525 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'shift', 'aug_type': 'audio', 'params': {'min_shift_ms': -5, 'max_shift_ms': 5}, 'prob': 0.0}
[2022-11-05 19:58:31.590535 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'volume', 'aug_type': 'audio', 'params': {'min_gain_dBFS': -15, 'max_gain_dBFS': 15}, 'prob': 0.0}
[2022-11-05 19:58:31.590535 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'specaug', 'aug_type': 'feature', 'params': {'inplace': True, 'max_time_warp': 5, 'max_t_ratio': 0.01, 'n_freq_masks': 2, 'max_f_ratio': 0.05, 'n_time_masks': 2, 'replace_with_zero': False}, 'prob': 0.0}
[2022-11-05 19:58:31.590535 INFO   ] augmentation:_parse_pipeline_from:126 - 数据增强配置:{'type': 'specsub', 'aug_type': 'feature', 'params': {'max_t': 10, 'num_t_sub': 2}, 'prob': 0.0}
I0424 08:57:03.707505  3377 nccl_context.cc:74] init nccl context nranks: 2 local rank: 0 gpu id: 0 ring id: 0
W0424 08:57:03.930370  3377 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0424 08:57:03.932493  3377 device_context.cc:465] device: 0, cuDNN Version: 7.6.
I0424 08:57:05.431638  3377 nccl_context.cc:107] init nccl context nranks: 2 local rank: 0 gpu id: 0 ring id: 10
······
[2023-03-16 20:30:42.559858 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [0/16579], loss: 16.48008, accuracy: 0.01562, learning rate: 0.00000000, speed: 21.27 data/sec, eta: 17 days, 7:38:55
[2023-03-16 20:31:15.045717 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [100/16579], loss: 16.34529, accuracy: 0.00062, learning rate: 0.00000121, speed: 197.03 data/sec, eta: 1 day, 20:52:05
[2023-03-16 20:31:47.086451 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [200/16579], loss: 16.31631, accuracy: 0.00054, learning rate: 0.00000241, speed: 199.77 data/sec, eta: 1 day, 20:14:40
[2023-03-16 20:32:19.711337 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [300/16579], loss: 16.30544, accuracy: 0.00047, learning rate: 0.00000362, speed: 196.19 data/sec, eta: 1 day, 21:02:28
[2023-03-16 20:32:52.853642 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [400/16579], loss: 16.29228, accuracy: 0.00043, learning rate: 0.00000483, speed: 193.14 data/sec, eta: 1 day, 21:44:42
[2023-03-16 20:33:25.116274 INFO   ] trainer:__train_epoch:232 - Train epoch: [1/30], batch: [500/16579], loss: 16.27346, accuracy: 0.00041, learning rate: 0.00000603, speed: 198.40 data/sec, eta: 1 day, 20:31:18
······
[2023-03-16 20:34:09.633572 INFO   ] trainer:train:304 - ======================================================================
100%|███████████████████████████████████| 84/84 [00:10<00:00,  7.79it/s]
开始两两对比音频特征...
100%|██████████████████████████████| 5332/5332 [00:07<00:00, 749.89it/s]
[2023-03-16 20:34:29.328638 INFO   ] trainer:train:306 - Test epoch: 1, time/epoch: 0:00:48.881889, threshold: 0.72, tpr: 0.62350, fpr: 0.04601, eer: 0.42250
[2023-03-16 20:34:29.328840 INFO   ] trainer:train:309 - ======================================================================
[2023-03-16 20:34:29.728986 INFO   ] trainer:__save_checkpoint:203 - 已保存模型:models/ecapa_tdnn_MelSpectrogram/best_model
[2023-03-16 20:34:30.724868 INFO   ] trainer:__save_checkpoint:203 - 已保存模型:models/ecapa_tdnn_MelSpectrogram/epoch_1
[2023-03-16 20:30:42.559858 INFO   ] trainer:__train_epoch:232 - Train epoch: [2/30], batch: [0/16579], loss: 16.48008, accuracy: 0.01562, learning rate: 0.00000000, speed: 21.27 data/sec, eta: 17 days, 7:38:55
[2023-03-16 20:31:15.045717 INFO   ] trainer:__train_epoch:232 - Train epoch: [2/30], batch: [100/16579], loss: 16.34529, accuracy: 0.00062, learning rate: 0.00000121, speed: 197.03 data/sec, eta: 1 day, 20:52:05
[2023-03-16 20:31:47.086451 INFO   ] trainer:__train_epoch:232 - Train epoch: [2/30], batch: [200/16579], loss: 16.31631, accuracy: 0.00054, learning rate: 0.00000241, speed: 199.77 data/sec, eta: 1 day, 20:14:40
[2023-03-16 20:32:19.711337 INFO   ] trainer:__train_epoch:232 - Train epoch: [2/30], batch: [300/16579], loss: 16.30544, accuracy: 0.00047, learning rate: 0.00000362, speed: 196.19 data/sec, eta: 1 day, 21:02:28
······

VisualDL页面:
VisualDL页面

数据增强

本项目提供了几种音频增强操作,分布是随机裁剪,添加背景噪声,调节语速,调节音量,和SpecAugment。其中后面4种增加的参数可以在configs/augmentation.json修改,参数prob是指定该增强操作的概率,如果不想使用该增强方式,可以设置为0。要主要的是,添加背景噪声需要把多个噪声音频文件存放在dataset/noise,否则会跳过噪声增强

noise:
  min_snr_dB: 10
  max_snr_dB: 30
  noise_path: "dataset/noise"
  prob: 0.5

评估模型

训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,计算tpr、fpr、eer。

python eval.py

输出类似如下:

······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO   ] trainer:evaluate:341 - 成功加载模型:models/ecapa_tdnn_MelSpectrogram/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00,  2.95it/s]
开始两两对比音频特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
评估消耗时间:65s,threshold:0.26,tpr:0.99391, fpr: 0.00611, eer: 0.01220

声纹对比

下面开始实现声纹对比,创建infer_contrast.py程序,编写infer()函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold,读者可以根据自己项目的准确度要求进行修改。

python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav

输出类似如下:

[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - model_path: models/ecapa_tdnn_MelSpectrogram/best_model/
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pth
audio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969

声纹识别

在上面的声纹对比的基础上,我们创建infer_recognition.py实现声纹识别。同样是使用上面声纹对比的infer()预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()register(),以及recognition(),第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()函数中,这个函数就是将输入的语音和语音库中的语音一一对比。
有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db文件夹中。

python infer_recognition.py

输出类似如下:

[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - model_path: models/ecapa_tdnn_MelSpectrogram/best_model/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pth
Loaded 沙瑞金 audio.
Loaded 李达康 audio.
请选择功能,0为注册音频到声纹库,1为执行声纹识别:0
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
请输入该音频用户的名称:夜雨飘零
请选择功能,0为注册音频到声纹库,1为执行声纹识别:1
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
识别说话的为:夜雨飘零,相似度为:0.920434

其他版本

参考资料

  1. https://github.com/PaddlePaddle/PaddleSpeech
  2. https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
  3. https://github.com/yeyupiaoling/PPASR
基于PyTorch实现声纹识别预训练模型(v1.0)是一个已经在声纹识别领域进行预训练的模型版本。声纹识别是一种通过声音信号来识别个体身份的技术。 这个预训练模型(v1.0)的核心是使用PyTorch框架搭建的神经网络模型。神经网络模型是一种模拟人类神经系统的数学模型,通过它可以学习和识别声音的特征。在声纹识别任务中,这个预训练模型主要用于提取声纹特征,并进行身份验证和识别。 基于PyTorch声纹识别预训练模型(v1.0)经过大量声纹数据的训练,学习到了许多声音特征和对应的声纹关系。它可以自动地从输入的声音信号中提取有用的特征,并将其转化成一个向量表示。这个向量表示可以用于比较和匹配不同声音信号,以判断它们是否来自同一个人的声纹。 预训练模型(v1.0)的优势在于它具备了较高的识别准确度和较好的鲁棒性。它能够处理不同的噪声环境、说话方式和语速,对不同的语音质量和背景干扰有一定的容忍度。此外,通过PyTorch框架,预训练模型(v1.0)还提供了灵活的训练和扩展选项,可以通过进一步的训练和微调来适应不同的声纹识别任务。 预训练模型(v1.0)的发布可以为声纹识别领域的实践者节省大量的时间和资源。可以直接应用这个预训练模型作为基础模型,在新的声纹识别任务上进行调整和优化。这样可以快速构建一个高性能和可靠的声纹识别系统,应用于人脸支付、智能家居安全等领域,提升用户体验和安全性。
评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜雨飘零1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值